🛠️🐜 Antkeeper superbuild with dependencies included https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1985 lines
64 KiB

/*
* An example showing how to play a stream sync'd to video, using ffmpeg.
*
* Requires C++11.
*/
#include <condition_variable>
#include <functional>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <limits>
#include <thread>
#include <chrono>
#include <atomic>
#include <vector>
#include <mutex>
#include <deque>
#include <array>
#include <cmath>
#include <string>
extern "C" {
#include "libavcodec/avcodec.h"
#include "libavformat/avformat.h"
#include "libavformat/avio.h"
#include "libavutil/time.h"
#include "libavutil/pixfmt.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libswscale/swscale.h"
#include "libswresample/swresample.h"
}
#include "SDL.h"
#include "AL/alc.h"
#include "AL/al.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
extern "C" {
/* Undefine this to disable use of experimental extensions. Don't use for
* production code! Interfaces and behavior may change prior to being
* finalized.
*/
#define ALLOW_EXPERIMENTAL_EXTS
#ifdef ALLOW_EXPERIMENTAL_EXTS
#ifndef AL_SOFT_map_buffer
#define AL_SOFT_map_buffer 1
typedef unsigned int ALbitfieldSOFT;
#define AL_MAP_READ_BIT_SOFT 0x00000001
#define AL_MAP_WRITE_BIT_SOFT 0x00000002
#define AL_MAP_PERSISTENT_BIT_SOFT 0x00000004
#define AL_PRESERVE_DATA_BIT_SOFT 0x00000008
typedef void (AL_APIENTRY*LPALBUFFERSTORAGESOFT)(ALuint buffer, ALenum format, const ALvoid *data, ALsizei size, ALsizei freq, ALbitfieldSOFT flags);
typedef void* (AL_APIENTRY*LPALMAPBUFFERSOFT)(ALuint buffer, ALsizei offset, ALsizei length, ALbitfieldSOFT access);
typedef void (AL_APIENTRY*LPALUNMAPBUFFERSOFT)(ALuint buffer);
typedef void (AL_APIENTRY*LPALFLUSHMAPPEDBUFFERSOFT)(ALuint buffer, ALsizei offset, ALsizei length);
#endif
#ifndef AL_SOFT_events
#define AL_SOFT_events 1
#define AL_EVENT_CALLBACK_FUNCTION_SOFT 0x1220
#define AL_EVENT_CALLBACK_USER_PARAM_SOFT 0x1221
#define AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT 0x1222
#define AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT 0x1223
#define AL_EVENT_TYPE_ERROR_SOFT 0x1224
#define AL_EVENT_TYPE_PERFORMANCE_SOFT 0x1225
#define AL_EVENT_TYPE_DEPRECATED_SOFT 0x1226
#define AL_EVENT_TYPE_DISCONNECTED_SOFT 0x1227
typedef void (AL_APIENTRY*ALEVENTPROCSOFT)(ALenum eventType, ALuint object, ALuint param,
ALsizei length, const ALchar *message,
void *userParam);
typedef void (AL_APIENTRY*LPALEVENTCONTROLSOFT)(ALsizei count, const ALenum *types, ALboolean enable);
typedef void (AL_APIENTRY*LPALEVENTCALLBACKSOFT)(ALEVENTPROCSOFT callback, void *userParam);
typedef void* (AL_APIENTRY*LPALGETPOINTERSOFT)(ALenum pname);
typedef void (AL_APIENTRY*LPALGETPOINTERVSOFT)(ALenum pname, void **values);
#endif
#endif /* ALLOW_EXPERIMENTAL_EXTS */
}
namespace {
inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
using fixed32 = std::chrono::duration<int64_t,std::ratio<1,(1_i64<<32)>>;
using nanoseconds = std::chrono::nanoseconds;
using microseconds = std::chrono::microseconds;
using milliseconds = std::chrono::milliseconds;
using seconds = std::chrono::seconds;
using seconds_d64 = std::chrono::duration<double>;
const std::string AppName{"alffplay"};
bool EnableDirectOut{false};
bool EnableWideStereo{false};
LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT;
LPALCGETINTEGER64VSOFT alcGetInteger64vSOFT;
#ifdef AL_SOFT_map_buffer
LPALBUFFERSTORAGESOFT alBufferStorageSOFT;
LPALMAPBUFFERSOFT alMapBufferSOFT;
LPALUNMAPBUFFERSOFT alUnmapBufferSOFT;
#endif
#ifdef AL_SOFT_events
LPALEVENTCONTROLSOFT alEventControlSOFT;
LPALEVENTCALLBACKSOFT alEventCallbackSOFT;
#endif
const seconds AVNoSyncThreshold{10};
const milliseconds VideoSyncThreshold(10);
#define VIDEO_PICTURE_QUEUE_SIZE 16
const seconds_d64 AudioSyncThreshold{0.03};
const milliseconds AudioSampleCorrectionMax{50};
/* Averaging filter coefficient for audio sync. */
#define AUDIO_DIFF_AVG_NB 20
const double AudioAvgFilterCoeff{std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB)};
/* Per-buffer size, in time */
const milliseconds AudioBufferTime{20};
/* Buffer total size, in time (should be divisible by the buffer time) */
const milliseconds AudioBufferTotalTime{800};
#define MAX_QUEUE_SIZE (15 * 1024 * 1024) /* Bytes of compressed data to keep queued */
enum {
FF_UPDATE_EVENT = SDL_USEREVENT,
FF_REFRESH_EVENT,
FF_MOVIE_DONE_EVENT
};
enum class SyncMaster {
Audio,
Video,
External,
Default = External
};
inline microseconds get_avtime()
{ return microseconds{av_gettime()}; }
/* Define unique_ptrs to auto-cleanup associated ffmpeg objects. */
struct AVIOContextDeleter {
void operator()(AVIOContext *ptr) { avio_closep(&ptr); }
};
using AVIOContextPtr = std::unique_ptr<AVIOContext,AVIOContextDeleter>;
struct AVFormatCtxDeleter {
void operator()(AVFormatContext *ptr) { avformat_close_input(&ptr); }
};
using AVFormatCtxPtr = std::unique_ptr<AVFormatContext,AVFormatCtxDeleter>;
struct AVCodecCtxDeleter {
void operator()(AVCodecContext *ptr) { avcodec_free_context(&ptr); }
};
using AVCodecCtxPtr = std::unique_ptr<AVCodecContext,AVCodecCtxDeleter>;
struct AVFrameDeleter {
void operator()(AVFrame *ptr) { av_frame_free(&ptr); }
};
using AVFramePtr = std::unique_ptr<AVFrame,AVFrameDeleter>;
struct SwrContextDeleter {
void operator()(SwrContext *ptr) { swr_free(&ptr); }
};
using SwrContextPtr = std::unique_ptr<SwrContext,SwrContextDeleter>;
struct SwsContextDeleter {
void operator()(SwsContext *ptr) { sws_freeContext(ptr); }
};
using SwsContextPtr = std::unique_ptr<SwsContext,SwsContextDeleter>;
class PacketQueue {
std::deque<AVPacket> mPackets;
size_t mTotalSize{0};
public:
~PacketQueue() { clear(); }
bool empty() const noexcept { return mPackets.empty(); }
size_t totalSize() const noexcept { return mTotalSize; }
void put(const AVPacket *pkt)
{
mPackets.push_back(AVPacket{});
if(av_packet_ref(&mPackets.back(), pkt) != 0)
mPackets.pop_back();
else
mTotalSize += mPackets.back().size;
}
AVPacket *front() noexcept
{ return &mPackets.front(); }
void pop()
{
AVPacket *pkt = &mPackets.front();
mTotalSize -= pkt->size;
av_packet_unref(pkt);
mPackets.pop_front();
}
void clear()
{
for(AVPacket &pkt : mPackets)
av_packet_unref(&pkt);
mPackets.clear();
mTotalSize = 0;
}
};
struct MovieState;
struct AudioState {
MovieState &mMovie;
AVStream *mStream{nullptr};
AVCodecCtxPtr mCodecCtx;
std::mutex mQueueMtx;
std::condition_variable mQueueCond;
/* Used for clock difference average computation */
seconds_d64 mClockDiffAvg{0};
/* Time of the next sample to be buffered */
nanoseconds mCurrentPts{0};
/* Device clock time that the stream started at. */
nanoseconds mDeviceStartTime{nanoseconds::min()};
/* Decompressed sample frame, and swresample context for conversion */
AVFramePtr mDecodedFrame;
SwrContextPtr mSwresCtx;
/* Conversion format, for what gets fed to OpenAL */
int mDstChanLayout{0};
AVSampleFormat mDstSampleFmt{AV_SAMPLE_FMT_NONE};
/* Storage of converted samples */
uint8_t *mSamples{nullptr};
int mSamplesLen{0}; /* In samples */
int mSamplesPos{0};
int mSamplesMax{0};
/* OpenAL format */
ALenum mFormat{AL_NONE};
ALsizei mFrameSize{0};
std::mutex mSrcMutex;
std::condition_variable mSrcCond;
std::atomic_flag mConnected;
std::atomic<bool> mPrepared{false};
ALuint mSource{0};
std::vector<ALuint> mBuffers;
ALsizei mBufferIdx{0};
AudioState(MovieState &movie) : mMovie(movie)
{ mConnected.test_and_set(std::memory_order_relaxed); }
~AudioState()
{
if(mSource)
alDeleteSources(1, &mSource);
if(!mBuffers.empty())
alDeleteBuffers(mBuffers.size(), mBuffers.data());
av_freep(&mSamples);
}
#ifdef AL_SOFT_events
static void AL_APIENTRY EventCallback(ALenum eventType, ALuint object, ALuint param,
ALsizei length, const ALchar *message,
void *userParam);
#endif
nanoseconds getClockNoLock();
nanoseconds getClock()
{
std::lock_guard<std::mutex> lock{mSrcMutex};
return getClockNoLock();
}
bool isBufferFilled() const { return mPrepared.load(); }
void startPlayback();
int getSync();
int decodeFrame();
bool readAudio(uint8_t *samples, int length);
int handler();
};
struct VideoState {
MovieState &mMovie;
AVStream *mStream{nullptr};
AVCodecCtxPtr mCodecCtx;
std::mutex mQueueMtx;
std::condition_variable mQueueCond;
nanoseconds mClock{0};
nanoseconds mFrameTimer{0};
nanoseconds mFrameLastPts{0};
nanoseconds mFrameLastDelay{0};
nanoseconds mCurrentPts{0};
/* time (av_gettime) at which we updated mCurrentPts - used to have running video pts */
microseconds mCurrentPtsTime{0};
/* Decompressed video frame, and swscale context for conversion */
AVFramePtr mDecodedFrame;
SwsContextPtr mSwscaleCtx;
struct Picture {
SDL_Texture *mImage{nullptr};
int mWidth{0}, mHeight{0}; /* Logical image size (actual size may be larger) */
std::atomic<bool> mUpdated{false};
nanoseconds mPts{0};
~Picture()
{
if(mImage)
SDL_DestroyTexture(mImage);
mImage = nullptr;
}
};
std::array<Picture,VIDEO_PICTURE_QUEUE_SIZE> mPictQ;
size_t mPictQSize{0}, mPictQRead{0}, mPictQWrite{0};
std::mutex mPictQMutex;
std::condition_variable mPictQCond;
bool mFirstUpdate{true};
std::atomic<bool> mEOS{false};
std::atomic<bool> mFinalUpdate{false};
VideoState(MovieState &movie) : mMovie(movie) { }
nanoseconds getClock();
bool isBufferFilled();
static Uint32 SDLCALL sdl_refresh_timer_cb(Uint32 interval, void *opaque);
void schedRefresh(milliseconds delay);
void display(SDL_Window *screen, SDL_Renderer *renderer);
void refreshTimer(SDL_Window *screen, SDL_Renderer *renderer);
void updatePicture(SDL_Window *screen, SDL_Renderer *renderer);
int queuePicture(nanoseconds pts);
int handler();
};
struct MovieState {
AVIOContextPtr mIOContext;
AVFormatCtxPtr mFormatCtx;
SyncMaster mAVSyncType{SyncMaster::Default};
microseconds mClockBase{0};
std::atomic<bool> mPlaying{false};
std::mutex mSendMtx;
std::condition_variable mSendCond;
/* NOTE: false/clear = need data, true/set = no data needed */
std::atomic_flag mSendDataGood;
std::atomic<bool> mQuit{false};
AudioState mAudio;
VideoState mVideo;
std::thread mParseThread;
std::thread mAudioThread;
std::thread mVideoThread;
std::string mFilename;
MovieState(std::string fname)
: mAudio(*this), mVideo(*this), mFilename(std::move(fname))
{ }
~MovieState()
{
mQuit = true;
if(mParseThread.joinable())
mParseThread.join();
}
static int decode_interrupt_cb(void *ctx);
bool prepare();
void setTitle(SDL_Window *window);
nanoseconds getClock();
nanoseconds getMasterClock();
nanoseconds getDuration();
int streamComponentOpen(int stream_index);
int parse_handler();
};
nanoseconds AudioState::getClockNoLock()
{
// The audio clock is the timestamp of the sample currently being heard.
if(alcGetInteger64vSOFT)
{
// If device start time = min, we aren't playing yet.
if(mDeviceStartTime == nanoseconds::min())
return nanoseconds::zero();
// Get the current device clock time and latency.
auto device = alcGetContextsDevice(alcGetCurrentContext());
ALCint64SOFT devtimes[2]{0,0};
alcGetInteger64vSOFT(device, ALC_DEVICE_CLOCK_LATENCY_SOFT, 2, devtimes);
auto latency = nanoseconds{devtimes[1]};
auto device_time = nanoseconds{devtimes[0]};
// The clock is simply the current device time relative to the recorded
// start time. We can also subtract the latency to get more a accurate
// position of where the audio device actually is in the output stream.
std::max(device_time - mDeviceStartTime - latency, nanoseconds::zero());
}
/* The source-based clock is based on 4 components:
* 1 - The timestamp of the next sample to buffer (mCurrentPts)
* 2 - The length of the source's buffer queue
* (AudioBufferTime*AL_BUFFERS_QUEUED)
* 3 - The offset OpenAL is currently at in the source (the first value
* from AL_SAMPLE_OFFSET_LATENCY_SOFT)
* 4 - The latency between OpenAL and the DAC (the second value from
* AL_SAMPLE_OFFSET_LATENCY_SOFT)
*
* Subtracting the length of the source queue from the next sample's
* timestamp gives the timestamp of the sample at the start of the source
* queue. Adding the source offset to that results in the timestamp for the
* sample at OpenAL's current position, and subtracting the source latency
* from that gives the timestamp of the sample currently at the DAC.
*/
nanoseconds pts{mCurrentPts};
if(mSource)
{
ALint64SOFT offset[2];
/* NOTE: The source state must be checked last, in case an underrun
* occurs and the source stops between retrieving the offset+latency
* and getting the state. */
if(alGetSourcei64vSOFT)
alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
else
{
ALint ioffset;
alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
offset[0] = ALint64SOFT{ioffset} << 32;
offset[1] = 0;
}
ALint queued, status;
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
alGetSourcei(mSource, AL_SOURCE_STATE, &status);
/* If the source is AL_STOPPED, then there was an underrun and all
* buffers are processed, so ignore the source queue. The audio thread
* will put the source into an AL_INITIAL state and clear the queue
* when it starts recovery. */
if(status != AL_STOPPED)
{
pts -= AudioBufferTime*queued;
pts += std::chrono::duration_cast<nanoseconds>(
fixed32{offset[0] / mCodecCtx->sample_rate});
}
/* Don't offset by the latency if the source isn't playing. */
if(status == AL_PLAYING)
pts -= nanoseconds{offset[1]};
}
return std::max(pts, nanoseconds::zero());
}
void AudioState::startPlayback()
{
alSourcePlay(mSource);
if(alcGetInteger64vSOFT)
{
// Subtract the total buffer queue time from the current pts to get the
// pts of the start of the queue.
nanoseconds startpts{mCurrentPts - AudioBufferTotalTime};
int64_t srctimes[2]{0,0};
alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_CLOCK_SOFT, srctimes);
auto device_time = nanoseconds{srctimes[1]};
auto src_offset = std::chrono::duration_cast<nanoseconds>(fixed32{srctimes[0]}) /
mCodecCtx->sample_rate;
// The mixer may have ticked and incremented the device time and sample
// offset, so subtract the source offset from the device time to get
// the device time the source started at. Also subtract startpts to get
// the device time the stream would have started at to reach where it
// is now.
mDeviceStartTime = device_time - src_offset - startpts;
}
}
int AudioState::getSync()
{
if(mMovie.mAVSyncType == SyncMaster::Audio)
return 0;
auto ref_clock = mMovie.getMasterClock();
auto diff = ref_clock - getClockNoLock();
if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold))
{
/* Difference is TOO big; reset accumulated average */
mClockDiffAvg = seconds_d64::zero();
return 0;
}
/* Accumulate the diffs */
mClockDiffAvg = mClockDiffAvg*AudioAvgFilterCoeff + diff;
auto avg_diff = mClockDiffAvg*(1.0 - AudioAvgFilterCoeff);
if(avg_diff < AudioSyncThreshold/2.0 && avg_diff > -AudioSyncThreshold)
return 0;
/* Constrain the per-update difference to avoid exceedingly large skips */
diff = std::min<nanoseconds>(std::max<nanoseconds>(diff, -AudioSampleCorrectionMax),
AudioSampleCorrectionMax);
return static_cast<int>(std::chrono::duration_cast<seconds>(diff*mCodecCtx->sample_rate).count());
}
int AudioState::decodeFrame()
{
while(!mMovie.mQuit.load(std::memory_order_relaxed))
{
std::unique_lock<std::mutex> lock(mQueueMtx);
int ret = avcodec_receive_frame(mCodecCtx.get(), mDecodedFrame.get());
if(ret == AVERROR(EAGAIN))
{
mMovie.mSendDataGood.clear(std::memory_order_relaxed);
std::unique_lock<std::mutex>(mMovie.mSendMtx).unlock();
mMovie.mSendCond.notify_one();
do {
mQueueCond.wait(lock);
ret = avcodec_receive_frame(mCodecCtx.get(), mDecodedFrame.get());
} while(ret == AVERROR(EAGAIN));
}
lock.unlock();
if(ret == AVERROR_EOF) break;
mMovie.mSendDataGood.clear(std::memory_order_relaxed);
mMovie.mSendCond.notify_one();
if(ret < 0)
{
std::cerr<< "Failed to decode frame: "<<ret <<std::endl;
return 0;
}
if(mDecodedFrame->nb_samples <= 0)
{
av_frame_unref(mDecodedFrame.get());
continue;
}
/* If provided, update w/ pts */
if(mDecodedFrame->best_effort_timestamp != AV_NOPTS_VALUE)
mCurrentPts = std::chrono::duration_cast<nanoseconds>(
seconds_d64(av_q2d(mStream->time_base)*mDecodedFrame->best_effort_timestamp)
);
if(mDecodedFrame->nb_samples > mSamplesMax)
{
av_freep(&mSamples);
av_samples_alloc(
&mSamples, nullptr, mCodecCtx->channels,
mDecodedFrame->nb_samples, mDstSampleFmt, 0
);
mSamplesMax = mDecodedFrame->nb_samples;
}
/* Return the amount of sample frames converted */
int data_size{swr_convert(mSwresCtx.get(), &mSamples, mDecodedFrame->nb_samples,
const_cast<const uint8_t**>(mDecodedFrame->data), mDecodedFrame->nb_samples)};
av_frame_unref(mDecodedFrame.get());
return data_size;
}
return 0;
}
/* Duplicates the sample at in to out, count times. The frame size is a
* multiple of the template type size.
*/
template<typename T>
static void sample_dup(uint8_t *out, const uint8_t *in, int count, int frame_size)
{
const T *sample = reinterpret_cast<const T*>(in);
T *dst = reinterpret_cast<T*>(out);
if(frame_size == sizeof(T))
std::fill_n(dst, count, *sample);
else
{
/* NOTE: frame_size is a multiple of sizeof(T). */
int type_mult = frame_size / sizeof(T);
int i = 0;
std::generate_n(dst, count*type_mult,
[sample,type_mult,&i]() -> T
{
T ret = sample[i];
i = (i+1)%type_mult;
return ret;
}
);
}
}
bool AudioState::readAudio(uint8_t *samples, int length)
{
int sample_skip = getSync();
int audio_size = 0;
/* Read the next chunk of data, refill the buffer, and queue it
* on the source */
length /= mFrameSize;
while(audio_size < length)
{
if(mSamplesLen <= 0 || mSamplesPos >= mSamplesLen)
{
int frame_len = decodeFrame();
if(frame_len <= 0) break;
mSamplesLen = frame_len;
mSamplesPos = std::min(mSamplesLen, sample_skip);
sample_skip -= mSamplesPos;
// Adjust the device start time and current pts by the amount we're
// skipping/duplicating, so that the clock remains correct for the
// current stream position.
auto skip = nanoseconds(seconds(mSamplesPos)) / mCodecCtx->sample_rate;
mDeviceStartTime -= skip;
mCurrentPts += skip;
continue;
}
int rem = length - audio_size;
if(mSamplesPos >= 0)
{
int len = mSamplesLen - mSamplesPos;
if(rem > len) rem = len;
memcpy(samples, mSamples + mSamplesPos*mFrameSize, rem*mFrameSize);
}
else
{
rem = std::min(rem, -mSamplesPos);
/* Add samples by copying the first sample */
if((mFrameSize&7) == 0)
sample_dup<uint64_t>(samples, mSamples, rem, mFrameSize);
else if((mFrameSize&3) == 0)
sample_dup<uint32_t>(samples, mSamples, rem, mFrameSize);
else if((mFrameSize&1) == 0)
sample_dup<uint16_t>(samples, mSamples, rem, mFrameSize);
else
sample_dup<uint8_t>(samples, mSamples, rem, mFrameSize);
}
mSamplesPos += rem;
mCurrentPts += nanoseconds(seconds(rem)) / mCodecCtx->sample_rate;
samples += rem*mFrameSize;
audio_size += rem;
}
if(audio_size <= 0)
return false;
if(audio_size < length)
{
int rem = length - audio_size;
std::fill_n(samples, rem*mFrameSize,
(mDstSampleFmt == AV_SAMPLE_FMT_U8) ? 0x80 : 0x00);
mCurrentPts += nanoseconds(seconds(rem)) / mCodecCtx->sample_rate;
audio_size += rem;
}
return true;
}
#ifdef AL_SOFT_events
void AL_APIENTRY AudioState::EventCallback(ALenum eventType, ALuint object, ALuint param,
ALsizei length, const ALchar *message,
void *userParam)
{
AudioState *self = reinterpret_cast<AudioState*>(userParam);
if(eventType == AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT)
{
/* Temporarily lock the source mutex to ensure it's not between
* checking the processed count and going to sleep.
*/
std::unique_lock<std::mutex>(self->mSrcMutex).unlock();
self->mSrcCond.notify_one();
return;
}
std::cout<< "\n---- AL Event on AudioState "<<self<<" ----\nEvent: ";
switch(eventType)
{
case AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT: std::cout<< "Buffer completed"; break;
case AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT: std::cout<< "Source state changed"; break;
case AL_EVENT_TYPE_ERROR_SOFT: std::cout<< "API error"; break;
case AL_EVENT_TYPE_PERFORMANCE_SOFT: std::cout<< "Performance"; break;
case AL_EVENT_TYPE_DEPRECATED_SOFT: std::cout<< "Deprecated"; break;
case AL_EVENT_TYPE_DISCONNECTED_SOFT: std::cout<< "Disconnected"; break;
default: std::cout<< "0x"<<std::hex<<std::setw(4)<<std::setfill('0')<<eventType<<
std::dec<<std::setw(0)<<std::setfill(' '); break;
}
std::cout<< "\n"
"Object ID: "<<object<<"\n"
"Parameter: "<<param<<"\n"
"Message: "<<std::string(message, length)<<"\n----"<<
std::endl;
if(eventType == AL_EVENT_TYPE_DISCONNECTED_SOFT)
{
{ std::lock_guard<std::mutex> lock(self->mSrcMutex);
self->mConnected.clear(std::memory_order_release);
}
std::unique_lock<std::mutex>(self->mSrcMutex).unlock();
self->mSrcCond.notify_one();
}
}
#endif
int AudioState::handler()
{
std::unique_lock<std::mutex> srclock(mSrcMutex);
milliseconds sleep_time = AudioBufferTime / 3;
ALenum fmt;
#ifdef AL_SOFT_events
const std::array<ALenum,6> evt_types{{
AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT, AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT,
AL_EVENT_TYPE_ERROR_SOFT, AL_EVENT_TYPE_PERFORMANCE_SOFT, AL_EVENT_TYPE_DEPRECATED_SOFT,
AL_EVENT_TYPE_DISCONNECTED_SOFT
}};
if(alEventControlSOFT)
{
alEventControlSOFT(evt_types.size(), evt_types.data(), AL_TRUE);
alEventCallbackSOFT(EventCallback, this);
sleep_time = AudioBufferTotalTime;
}
#endif
/* Find a suitable format for OpenAL. */
mDstChanLayout = 0;
mFormat = AL_NONE;
if((mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLT || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLTP) &&
alIsExtensionPresent("AL_EXT_FLOAT32"))
{
mDstSampleFmt = AV_SAMPLE_FMT_FLT;
mFrameSize = 4;
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_71CHN32")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 8;
mFormat = fmt;
}
if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_51CHN32")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 6;
mFormat = fmt;
}
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO_FLOAT32;
}
/* Assume 3D B-Format (ambisonics) if the channel layout is blank and
* there's 4 or more channels. FFmpeg/libavcodec otherwise seems to
* have no way to specify if the source is actually B-Format (let alone
* if it's 2D or 3D).
*/
if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
alIsExtensionPresent("AL_EXT_BFORMAT") &&
(fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D_FLOAT32")) != AL_NONE && fmt != -1)
{
int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
if((order+1)*(order+1) == mCodecCtx->channels ||
(order+1)*(order+1) + 2 == mCodecCtx->channels)
{
/* OpenAL only supports first-order with AL_EXT_BFORMAT, which
* is 4 channels for 3D buffers.
*/
mFrameSize *= 4;
mFormat = fmt;
}
}
if(!mFormat)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = AL_FORMAT_STEREO_FLOAT32;
}
}
if(mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8 || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8P)
{
mDstSampleFmt = AV_SAMPLE_FMT_U8;
mFrameSize = 1;
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_71CHN8")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 8;
mFormat = fmt;
}
if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_51CHN8")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 6;
mFormat = fmt;
}
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO8;
}
if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
alIsExtensionPresent("AL_EXT_BFORMAT") &&
(fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D8")) != AL_NONE && fmt != -1)
{
int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
if((order+1)*(order+1) == mCodecCtx->channels ||
(order+1)*(order+1) + 2 == mCodecCtx->channels)
{
mFrameSize *= 4;
mFormat = fmt;
}
}
if(!mFormat)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = AL_FORMAT_STEREO8;
}
}
if(!mFormat)
{
mDstSampleFmt = AV_SAMPLE_FMT_S16;
mFrameSize = 2;
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_71CHN16")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 8;
mFormat = fmt;
}
if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_51CHN16")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 6;
mFormat = fmt;
}
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO16;
}
if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4 &&
alIsExtensionPresent("AL_EXT_BFORMAT") &&
(fmt=alGetEnumValue("AL_FORMAT_BFORMAT3D16")) != AL_NONE && fmt != -1)
{
int order{static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1};
if((order+1)*(order+1) == mCodecCtx->channels ||
(order+1)*(order+1) + 2 == mCodecCtx->channels)
{
mFrameSize *= 4;
mFormat = fmt;
}
}
if(!mFormat)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = AL_FORMAT_STEREO16;
}
}
void *samples = nullptr;
ALsizei buffer_len = std::chrono::duration_cast<std::chrono::duration<int>>(
mCodecCtx->sample_rate * AudioBufferTime).count() * mFrameSize;
mSamples = nullptr;
mSamplesMax = 0;
mSamplesPos = 0;
mSamplesLen = 0;
mDecodedFrame.reset(av_frame_alloc());
if(!mDecodedFrame)
{
std::cerr<< "Failed to allocate audio frame" <<std::endl;
goto finish;
}
if(!mDstChanLayout)
{
/* OpenAL only supports first-order ambisonics with AL_EXT_BFORMAT, so
* we have to drop any extra channels. It also only supports FuMa
* channel ordering and normalization, so a custom matrix is needed to
* scale and reorder the source from AmbiX.
*/
mSwresCtx.reset(swr_alloc_set_opts(nullptr,
(1_i64<<4)-1, mDstSampleFmt, mCodecCtx->sample_rate,
(1_i64<<mCodecCtx->channels)-1, mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
0, nullptr));
/* Note that ffmpeg/libavcodec has no method to check the ambisonic
* channel order and normalization, so we can only assume AmbiX as the
* defacto-standard. This is not true for .amb files, which use FuMa.
*/
std::vector<double> mtx(64*64, 0.0);
mtx[0 + 0*64] = std::sqrt(0.5);
mtx[3 + 1*64] = 1.0;
mtx[1 + 2*64] = 1.0;
mtx[2 + 3*64] = 1.0;
swr_set_matrix(mSwresCtx.get(), mtx.data(), 64);
}
else
mSwresCtx.reset(swr_alloc_set_opts(nullptr,
mDstChanLayout, mDstSampleFmt, mCodecCtx->sample_rate,
mCodecCtx->channel_layout ? mCodecCtx->channel_layout :
static_cast<uint64_t>(av_get_default_channel_layout(mCodecCtx->channels)),
mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
0, nullptr));
if(!mSwresCtx || swr_init(mSwresCtx.get()) != 0)
{
std::cerr<< "Failed to initialize audio converter" <<std::endl;
goto finish;
}
mBuffers.assign(AudioBufferTotalTime / AudioBufferTime, 0);
alGenBuffers(mBuffers.size(), mBuffers.data());
alGenSources(1, &mSource);
if(EnableDirectOut)
alSourcei(mSource, AL_DIRECT_CHANNELS_SOFT, AL_TRUE);
if (EnableWideStereo) {
ALfloat angles[2] = {static_cast<ALfloat>(M_PI / 3.0),
static_cast<ALfloat>(-M_PI / 3.0)};
alSourcefv(mSource, AL_STEREO_ANGLES, angles);
}
if(alGetError() != AL_NO_ERROR)
goto finish;
#ifdef AL_SOFT_map_buffer
if(alBufferStorageSOFT)
{
for(ALuint bufid : mBuffers)
alBufferStorageSOFT(bufid, mFormat, nullptr, buffer_len, mCodecCtx->sample_rate,
AL_MAP_WRITE_BIT_SOFT);
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Failed to use mapped buffers\n");
samples = av_malloc(buffer_len);
}
}
else
#endif
samples = av_malloc(buffer_len);
while(alGetError() == AL_NO_ERROR && !mMovie.mQuit.load(std::memory_order_relaxed) &&
mConnected.test_and_set(std::memory_order_relaxed))
{
/* First remove any processed buffers. */
ALint processed;
alGetSourcei(mSource, AL_BUFFERS_PROCESSED, &processed);
while(processed > 0)
{
std::array<ALuint,4> bids;
alSourceUnqueueBuffers(mSource, std::min<ALsizei>(bids.size(), processed),
bids.data());
processed -= std::min<ALsizei>(bids.size(), processed);
}
/* Refill the buffer queue. */
ALint queued;
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
while(static_cast<ALuint>(queued) < mBuffers.size())
{
ALuint bufid = mBuffers[mBufferIdx];
uint8_t *ptr = reinterpret_cast<uint8_t*>(samples
#ifdef AL_SOFT_map_buffer
? samples : alMapBufferSOFT(bufid, 0, buffer_len, AL_MAP_WRITE_BIT_SOFT)
#endif
);
if(!ptr) break;
/* Read the next chunk of data, filling the buffer, and queue it on
* the source */
bool got_audio = readAudio(ptr, buffer_len);
#ifdef AL_SOFT_map_buffer
if(!samples) alUnmapBufferSOFT(bufid);
#endif
if(!got_audio) break;
if(samples)
alBufferData(bufid, mFormat, samples, buffer_len, mCodecCtx->sample_rate);
alSourceQueueBuffers(mSource, 1, &bufid);
mBufferIdx = (mBufferIdx+1) % mBuffers.size();
++queued;
}
if(queued == 0)
break;
/* Check that the source is playing. */
ALint state;
alGetSourcei(mSource, AL_SOURCE_STATE, &state);
if(state == AL_STOPPED)
{
/* AL_STOPPED means there was an underrun. Clear the buffer queue
* since this likely means we're late, and rewind the source to get
* it back into an AL_INITIAL state.
*/
alSourceRewind(mSource);
alSourcei(mSource, AL_BUFFER, 0);
if(alcGetInteger64vSOFT)
{
/* Also update the device start time with the current device
* clock, so the decoder knows we're running behind.
*/
int64_t devtime{};
alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()),
ALC_DEVICE_CLOCK_SOFT, 1, &devtime);
mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
}
continue;
}
/* (re)start the source if needed, and wait for a buffer to finish */
if(state != AL_PLAYING && state != AL_PAUSED)
{
if(mMovie.mPlaying.load(std::memory_order_relaxed))
startPlayback();
else
mPrepared.store(true);
}
mSrcCond.wait_for(srclock, sleep_time);
}
alSourceRewind(mSource);
alSourcei(mSource, AL_BUFFER, 0);
finish:
av_freep(&samples);
srclock.unlock();
#ifdef AL_SOFT_events
if(alEventControlSOFT)
{
alEventControlSOFT(evt_types.size(), evt_types.data(), AL_FALSE);
alEventCallbackSOFT(nullptr, nullptr);
}
#endif
return 0;
}
nanoseconds VideoState::getClock()
{
/* NOTE: This returns incorrect times while not playing. */
auto delta = get_avtime() - mCurrentPtsTime;
return mCurrentPts + delta;
}
bool VideoState::isBufferFilled()
{
std::unique_lock<std::mutex> lock(mPictQMutex);
return mPictQSize >= mPictQ.size();
}
Uint32 SDLCALL VideoState::sdl_refresh_timer_cb(Uint32 /*interval*/, void *opaque)
{
SDL_Event evt{};
evt.user.type = FF_REFRESH_EVENT;
evt.user.data1 = opaque;
SDL_PushEvent(&evt);
return 0; /* 0 means stop timer */
}
/* Schedules an FF_REFRESH_EVENT event to occur in 'delay' ms. */
void VideoState::schedRefresh(milliseconds delay)
{
SDL_AddTimer(delay.count(), sdl_refresh_timer_cb, this);
}
/* Called by VideoState::refreshTimer to display the next video frame. */
void VideoState::display(SDL_Window *screen, SDL_Renderer *renderer)
{
Picture *vp = &mPictQ[mPictQRead];
if(!vp->mImage)
return;
float aspect_ratio;
int win_w, win_h;
int w, h, x, y;
if(mCodecCtx->sample_aspect_ratio.num == 0)
aspect_ratio = 0.0f;
else
{
aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio) * mCodecCtx->width /
mCodecCtx->height;
}
if(aspect_ratio <= 0.0f)
aspect_ratio = static_cast<float>(mCodecCtx->width) / static_cast<float>(mCodecCtx->height);
SDL_GetWindowSize(screen, &win_w, &win_h);
h = win_h;
w = (static_cast<int>(rint(h * aspect_ratio)) + 3) & ~3;
if(w > win_w)
{
w = win_w;
h = (static_cast<int>(rint(w / aspect_ratio)) + 3) & ~3;
}
x = (win_w - w) / 2;
y = (win_h - h) / 2;
SDL_Rect src_rect{ 0, 0, vp->mWidth, vp->mHeight };
SDL_Rect dst_rect{ x, y, w, h };
SDL_RenderCopy(renderer, vp->mImage, &src_rect, &dst_rect);
SDL_RenderPresent(renderer);
}
/* FF_REFRESH_EVENT handler called on the main thread where the SDL_Renderer
* was created. It handles the display of the next decoded video frame (if not
* falling behind), and sets up the timer for the following video frame.
*/
void VideoState::refreshTimer(SDL_Window *screen, SDL_Renderer *renderer)
{
if(!mStream)
{
if(mEOS)
{
mFinalUpdate = true;
std::unique_lock<std::mutex>(mPictQMutex).unlock();
mPictQCond.notify_all();
return;
}
schedRefresh(milliseconds(100));
return;
}
if(!mMovie.mPlaying.load(std::memory_order_relaxed))
{
schedRefresh(milliseconds(1));
return;
}
std::unique_lock<std::mutex> lock(mPictQMutex);
retry:
if(mPictQSize == 0)
{
if(mEOS)
mFinalUpdate = true;
else
schedRefresh(milliseconds(1));
lock.unlock();
mPictQCond.notify_all();
return;
}
Picture *vp = &mPictQ[mPictQRead];
mCurrentPts = vp->mPts;
mCurrentPtsTime = get_avtime();
/* Get delay using the frame pts and the pts from last frame. */
auto delay = vp->mPts - mFrameLastPts;
if(delay <= seconds::zero() || delay >= seconds(1))
{
/* If incorrect delay, use previous one. */
delay = mFrameLastDelay;
}
/* Save for next frame. */
mFrameLastDelay = delay;
mFrameLastPts = vp->mPts;
/* Update delay to sync to clock if not master source. */
if(mMovie.mAVSyncType != SyncMaster::Video)
{
auto ref_clock = mMovie.getMasterClock();
auto diff = vp->mPts - ref_clock;
/* Skip or repeat the frame. Take delay into account. */
auto sync_threshold = std::min<nanoseconds>(delay, VideoSyncThreshold);
if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold))
{
if(diff <= -sync_threshold)
delay = nanoseconds::zero();
else if(diff >= sync_threshold)
delay *= 2;
}
}
mFrameTimer += delay;
/* Compute the REAL delay. */
auto actual_delay = mFrameTimer - get_avtime();
if(!(actual_delay >= VideoSyncThreshold))
{
/* We don't have time to handle this picture, just skip to the next one. */
mPictQRead = (mPictQRead+1)%mPictQ.size();
mPictQSize--;
goto retry;
}
schedRefresh(std::chrono::duration_cast<milliseconds>(actual_delay));
/* Show the picture! */
display(screen, renderer);
/* Update queue for next picture. */
mPictQRead = (mPictQRead+1)%mPictQ.size();
mPictQSize--;
lock.unlock();
mPictQCond.notify_all();
}
/* FF_UPDATE_EVENT handler, updates the picture's texture. It's called on the
* main thread where the renderer was created.
*/
void VideoState::updatePicture(SDL_Window *screen, SDL_Renderer *renderer)
{
Picture *vp = &mPictQ[mPictQWrite];
bool fmt_updated = false;
/* allocate or resize the buffer! */
if(!vp->mImage || vp->mWidth != mCodecCtx->width || vp->mHeight != mCodecCtx->height)
{
fmt_updated = true;
if(vp->mImage)
SDL_DestroyTexture(vp->mImage);
vp->mImage = SDL_CreateTexture(
renderer, SDL_PIXELFORMAT_IYUV, SDL_TEXTUREACCESS_STREAMING,
mCodecCtx->coded_width, mCodecCtx->coded_height
);
if(!vp->mImage)
std::cerr<< "Failed to create YV12 texture!" <<std::endl;
vp->mWidth = mCodecCtx->width;
vp->mHeight = mCodecCtx->height;
if(mFirstUpdate && vp->mWidth > 0 && vp->mHeight > 0)
{
/* For the first update, set the window size to the video size. */
mFirstUpdate = false;
int w = vp->mWidth;
int h = vp->mHeight;
if(mCodecCtx->sample_aspect_ratio.den != 0)
{
double aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio);
if(aspect_ratio >= 1.0)
w = static_cast<int>(w*aspect_ratio + 0.5);
else if(aspect_ratio > 0.0)
h = static_cast<int>(h/aspect_ratio + 0.5);
}
SDL_SetWindowSize(screen, w, h);
}
}
if(vp->mImage)
{
AVFrame *frame = mDecodedFrame.get();
void *pixels = nullptr;
int pitch = 0;
if(mCodecCtx->pix_fmt == AV_PIX_FMT_YUV420P)
SDL_UpdateYUVTexture(vp->mImage, nullptr,
frame->data[0], frame->linesize[0],
frame->data[1], frame->linesize[1],
frame->data[2], frame->linesize[2]
);
else if(SDL_LockTexture(vp->mImage, nullptr, &pixels, &pitch) != 0)
std::cerr<< "Failed to lock texture" <<std::endl;
else
{
// Convert the image into YUV format that SDL uses
int coded_w = mCodecCtx->coded_width;
int coded_h = mCodecCtx->coded_height;
int w = mCodecCtx->width;
int h = mCodecCtx->height;
if(!mSwscaleCtx || fmt_updated)
{
mSwscaleCtx.reset(sws_getContext(
w, h, mCodecCtx->pix_fmt,
w, h, AV_PIX_FMT_YUV420P, 0,
nullptr, nullptr, nullptr
));
}
/* point pict at the queue */
uint8_t *pict_data[3];
pict_data[0] = reinterpret_cast<uint8_t*>(pixels);
pict_data[1] = pict_data[0] + coded_w*coded_h;
pict_data[2] = pict_data[1] + coded_w*coded_h/4;
int pict_linesize[3];
pict_linesize[0] = pitch;
pict_linesize[1] = pitch / 2;
pict_linesize[2] = pitch / 2;
sws_scale(mSwscaleCtx.get(), reinterpret_cast<uint8_t**>(frame->data),
frame->linesize, 0, h, pict_data, pict_linesize);
SDL_UnlockTexture(vp->mImage);
}
}
vp->mUpdated.store(true, std::memory_order_release);
std::unique_lock<std::mutex>(mPictQMutex).unlock();
mPictQCond.notify_one();
}
int VideoState::queuePicture(nanoseconds pts)
{
/* Wait until we have space for a new pic */
std::unique_lock<std::mutex> lock(mPictQMutex);
while(mPictQSize >= mPictQ.size() && !mMovie.mQuit.load(std::memory_order_relaxed))
mPictQCond.wait(lock);
lock.unlock();
if(mMovie.mQuit.load(std::memory_order_relaxed))
return -1;
Picture *vp = &mPictQ[mPictQWrite];
/* We have to create/update the picture in the main thread */
vp->mUpdated.store(false, std::memory_order_relaxed);
SDL_Event evt{};
evt.user.type = FF_UPDATE_EVENT;
evt.user.data1 = this;
SDL_PushEvent(&evt);
/* Wait until the picture is updated. */
lock.lock();
while(!vp->mUpdated.load(std::memory_order_relaxed))
{
if(mMovie.mQuit.load(std::memory_order_relaxed))
return -1;
mPictQCond.wait(lock);
}
if(mMovie.mQuit.load(std::memory_order_relaxed))
return -1;
vp->mPts = pts;
mPictQWrite = (mPictQWrite+1)%mPictQ.size();
mPictQSize++;
lock.unlock();
return 0;
}
int VideoState::handler()
{
mDecodedFrame.reset(av_frame_alloc());
while(!mMovie.mQuit.load(std::memory_order_relaxed))
{
std::unique_lock<std::mutex> lock(mQueueMtx);
/* Decode video frame */
int ret = avcodec_receive_frame(mCodecCtx.get(), mDecodedFrame.get());
if(ret == AVERROR(EAGAIN))
{
mMovie.mSendDataGood.clear(std::memory_order_relaxed);
std::unique_lock<std::mutex>(mMovie.mSendMtx).unlock();
mMovie.mSendCond.notify_one();
do {
mQueueCond.wait(lock);
ret = avcodec_receive_frame(mCodecCtx.get(), mDecodedFrame.get());
} while(ret == AVERROR(EAGAIN));
}
lock.unlock();
if(ret == AVERROR_EOF) break;
mMovie.mSendDataGood.clear(std::memory_order_relaxed);
mMovie.mSendCond.notify_one();
if(ret < 0)
{
std::cerr<< "Failed to decode frame: "<<ret <<std::endl;
continue;
}
/* Get the PTS for this frame. */
nanoseconds pts;
if(mDecodedFrame->best_effort_timestamp != AV_NOPTS_VALUE)
mClock = std::chrono::duration_cast<nanoseconds>(
seconds_d64(av_q2d(mStream->time_base)*mDecodedFrame->best_effort_timestamp)
);
pts = mClock;
/* Update the video clock to the next expected PTS. */
auto frame_delay = av_q2d(mCodecCtx->time_base);
frame_delay += mDecodedFrame->repeat_pict * (frame_delay * 0.5);
mClock += std::chrono::duration_cast<nanoseconds>(seconds_d64(frame_delay));
if(queuePicture(pts) < 0)
break;
av_frame_unref(mDecodedFrame.get());
}
mEOS = true;
std::unique_lock<std::mutex> lock(mPictQMutex);
if(mMovie.mQuit.load(std::memory_order_relaxed))
{
mPictQRead = 0;
mPictQWrite = 0;
mPictQSize = 0;
}
while(!mFinalUpdate)
mPictQCond.wait(lock);
return 0;
}
int MovieState::decode_interrupt_cb(void *ctx)
{
return reinterpret_cast<MovieState*>(ctx)->mQuit.load(std::memory_order_relaxed);
}
bool MovieState::prepare()
{
AVIOContext *avioctx = nullptr;
AVIOInterruptCB intcb = { decode_interrupt_cb, this };
if(avio_open2(&avioctx, mFilename.c_str(), AVIO_FLAG_READ, &intcb, nullptr))
{
std::cerr<< "Failed to open "<<mFilename <<std::endl;
return false;
}
mIOContext.reset(avioctx);
/* Open movie file. If avformat_open_input fails it will automatically free
* this context, so don't set it onto a smart pointer yet.
*/
AVFormatContext *fmtctx = avformat_alloc_context();
fmtctx->pb = mIOContext.get();
fmtctx->interrupt_callback = intcb;
if(avformat_open_input(&fmtctx, mFilename.c_str(), nullptr, nullptr) != 0)
{
std::cerr<< "Failed to open "<<mFilename <<std::endl;
return false;
}
mFormatCtx.reset(fmtctx);
/* Retrieve stream information */
if(avformat_find_stream_info(mFormatCtx.get(), nullptr) < 0)
{
std::cerr<< mFilename<<": failed to find stream info" <<std::endl;
return false;
}
mVideo.schedRefresh(milliseconds(40));
mParseThread = std::thread(std::mem_fn(&MovieState::parse_handler), this);
return true;
}
void MovieState::setTitle(SDL_Window *window)
{
auto pos1 = mFilename.rfind('/');
auto pos2 = mFilename.rfind('\\');
auto fpos = ((pos1 == std::string::npos) ? pos2 :
(pos2 == std::string::npos) ? pos1 :
std::max(pos1, pos2)) + 1;
SDL_SetWindowTitle(window, (mFilename.substr(fpos)+" - "+AppName).c_str());
}
nanoseconds MovieState::getClock()
{
if(!mPlaying.load(std::memory_order_relaxed))
return nanoseconds::zero();
return get_avtime() - mClockBase;
}
nanoseconds MovieState::getMasterClock()
{
if(mAVSyncType == SyncMaster::Video)
return mVideo.getClock();
if(mAVSyncType == SyncMaster::Audio)
return mAudio.getClock();
return getClock();
}
nanoseconds MovieState::getDuration()
{ return std::chrono::duration<int64_t,std::ratio<1,AV_TIME_BASE>>(mFormatCtx->duration); }
int MovieState::streamComponentOpen(int stream_index)
{
if(stream_index < 0 || static_cast<unsigned int>(stream_index) >= mFormatCtx->nb_streams)
return -1;
/* Get a pointer to the codec context for the stream, and open the
* associated codec.
*/
AVCodecCtxPtr avctx(avcodec_alloc_context3(nullptr));
if(!avctx) return -1;
if(avcodec_parameters_to_context(avctx.get(), mFormatCtx->streams[stream_index]->codecpar))
return -1;
AVCodec *codec = avcodec_find_decoder(avctx->codec_id);
if(!codec || avcodec_open2(avctx.get(), codec, nullptr) < 0)
{
std::cerr<< "Unsupported codec: "<<avcodec_get_name(avctx->codec_id)
<< " (0x"<<std::hex<<avctx->codec_id<<std::dec<<")" <<std::endl;
return -1;
}
/* Initialize and start the media type handler */
switch(avctx->codec_type)
{
case AVMEDIA_TYPE_AUDIO:
mAudio.mStream = mFormatCtx->streams[stream_index];
mAudio.mCodecCtx = std::move(avctx);
mAudioThread = std::thread(std::mem_fn(&AudioState::handler), &mAudio);
break;
case AVMEDIA_TYPE_VIDEO:
mVideo.mStream = mFormatCtx->streams[stream_index];
mVideo.mCodecCtx = std::move(avctx);
mVideoThread = std::thread(std::mem_fn(&VideoState::handler), &mVideo);
break;
default:
return -1;
}
return stream_index;
}
int MovieState::parse_handler()
{
int video_index = -1;
int audio_index = -1;
/* Dump information about file onto standard error */
av_dump_format(mFormatCtx.get(), 0, mFilename.c_str(), 0);
/* Find the first video and audio streams */
for(unsigned int i = 0;i < mFormatCtx->nb_streams;i++)
{
auto codecpar = mFormatCtx->streams[i]->codecpar;
if(codecpar->codec_type == AVMEDIA_TYPE_VIDEO && video_index < 0)
video_index = streamComponentOpen(i);
else if(codecpar->codec_type == AVMEDIA_TYPE_AUDIO && audio_index < 0)
audio_index = streamComponentOpen(i);
}
if(video_index < 0 && audio_index < 0)
{
std::cerr<< mFilename<<": could not open codecs" <<std::endl;
mQuit = true;
}
PacketQueue audio_queue, video_queue;
bool input_finished = false;
/* Main packet reading/dispatching loop */
while(!mQuit.load(std::memory_order_relaxed) && !input_finished)
{
AVPacket packet;
if(av_read_frame(mFormatCtx.get(), &packet) < 0)
input_finished = true;
else
{
/* Copy the packet into the queue it's meant for. */
if(packet.stream_index == video_index)
video_queue.put(&packet);
else if(packet.stream_index == audio_index)
audio_queue.put(&packet);
av_packet_unref(&packet);
}
do {
/* Send whatever queued packets we have. */
if(!audio_queue.empty())
{
std::unique_lock<std::mutex> lock(mAudio.mQueueMtx);
int ret;
do {
ret = avcodec_send_packet(mAudio.mCodecCtx.get(), audio_queue.front());
if(ret != AVERROR(EAGAIN)) audio_queue.pop();
} while(ret != AVERROR(EAGAIN) && !audio_queue.empty());
lock.unlock();
mAudio.mQueueCond.notify_one();
}
if(!video_queue.empty())
{
std::unique_lock<std::mutex> lock(mVideo.mQueueMtx);
int ret;
do {
ret = avcodec_send_packet(mVideo.mCodecCtx.get(), video_queue.front());
if(ret != AVERROR(EAGAIN)) video_queue.pop();
} while(ret != AVERROR(EAGAIN) && !video_queue.empty());
lock.unlock();
mVideo.mQueueCond.notify_one();
}
/* If the queues are completely empty, or it's not full and there's
* more input to read, go get more.
*/
size_t queue_size = audio_queue.totalSize() + video_queue.totalSize();
if(queue_size == 0 || (queue_size < MAX_QUEUE_SIZE && !input_finished))
break;
if(!mPlaying.load(std::memory_order_relaxed))
{
if((!mAudio.mCodecCtx || mAudio.isBufferFilled()) &&
(!mVideo.mCodecCtx || mVideo.isBufferFilled()))
{
/* Set the base time 50ms ahead of the current av time. */
mClockBase = get_avtime() + milliseconds(50);
mVideo.mCurrentPtsTime = mClockBase;
mVideo.mFrameTimer = mVideo.mCurrentPtsTime;
mAudio.startPlayback();
mPlaying.store(std::memory_order_release);
}
}
/* Nothing to send or get for now, wait a bit and try again. */
{ std::unique_lock<std::mutex> lock(mSendMtx);
if(mSendDataGood.test_and_set(std::memory_order_relaxed))
mSendCond.wait_for(lock, milliseconds(10));
}
} while(!mQuit.load(std::memory_order_relaxed));
}
/* Pass a null packet to finish the send buffers (the receive functions
* will get AVERROR_EOF when emptied).
*/
if(mVideo.mCodecCtx)
{
{ std::lock_guard<std::mutex> lock(mVideo.mQueueMtx);
avcodec_send_packet(mVideo.mCodecCtx.get(), nullptr);
}
mVideo.mQueueCond.notify_one();
}
if(mAudio.mCodecCtx)
{
{ std::lock_guard<std::mutex> lock(mAudio.mQueueMtx);
avcodec_send_packet(mAudio.mCodecCtx.get(), nullptr);
}
mAudio.mQueueCond.notify_one();
}
video_queue.clear();
audio_queue.clear();
/* all done - wait for it */
if(mVideoThread.joinable())
mVideoThread.join();
if(mAudioThread.joinable())
mAudioThread.join();
mVideo.mEOS = true;
std::unique_lock<std::mutex> lock(mVideo.mPictQMutex);
while(!mVideo.mFinalUpdate)
mVideo.mPictQCond.wait(lock);
lock.unlock();
SDL_Event evt{};
evt.user.type = FF_MOVIE_DONE_EVENT;
SDL_PushEvent(&evt);
return 0;
}
// Helper class+method to print the time with human-readable formatting.
struct PrettyTime {
seconds mTime;
};
inline std::ostream &operator<<(std::ostream &os, const PrettyTime &rhs)
{
using hours = std::chrono::hours;
using minutes = std::chrono::minutes;
using std::chrono::duration_cast;
seconds t = rhs.mTime;
if(t.count() < 0)
{
os << '-';
t *= -1;
}
// Only handle up to hour formatting
if(t >= hours(1))
os << duration_cast<hours>(t).count() << 'h' << std::setfill('0') << std::setw(2)
<< (duration_cast<minutes>(t).count() % 60) << 'm';
else
os << duration_cast<minutes>(t).count() << 'm' << std::setfill('0');
os << std::setw(2) << (duration_cast<seconds>(t).count() % 60) << 's' << std::setw(0)
<< std::setfill(' ');
return os;
}
} // namespace
int main(int argc, char *argv[])
{
std::unique_ptr<MovieState> movState;
if(argc < 2)
{
std::cerr<< "Usage: "<<argv[0]<<" [-device <device name>] [-direct] <files...>" <<std::endl;
return 1;
}
/* Register all formats and codecs */
av_register_all();
/* Initialize networking protocols */
avformat_network_init();
if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER))
{
std::cerr<< "Could not initialize SDL - <<"<<SDL_GetError() <<std::endl;
return 1;
}
/* Make a window to put our video */
SDL_Window *screen = SDL_CreateWindow(AppName.c_str(), 0, 0, 640, 480, SDL_WINDOW_RESIZABLE);
if(!screen)
{
std::cerr<< "SDL: could not set video mode - exiting" <<std::endl;
return 1;
}
/* Make a renderer to handle the texture image surface and rendering. */
Uint32 render_flags = SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC;
SDL_Renderer *renderer = SDL_CreateRenderer(screen, -1, render_flags);
if(renderer)
{
SDL_RendererInfo rinf{};
bool ok = false;
/* Make sure the renderer supports IYUV textures. If not, fallback to a
* software renderer. */
if(SDL_GetRendererInfo(renderer, &rinf) == 0)
{
for(Uint32 i = 0;!ok && i < rinf.num_texture_formats;i++)
ok = (rinf.texture_formats[i] == SDL_PIXELFORMAT_IYUV);
}
if(!ok)
{
std::cerr<< "IYUV pixelformat textures not supported on renderer "<<rinf.name <<std::endl;
SDL_DestroyRenderer(renderer);
renderer = nullptr;
}
}
if(!renderer)
{
render_flags = SDL_RENDERER_SOFTWARE | SDL_RENDERER_PRESENTVSYNC;
renderer = SDL_CreateRenderer(screen, -1, render_flags);
}
if(!renderer)
{
std::cerr<< "SDL: could not create renderer - exiting" <<std::endl;
return 1;
}
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderFillRect(renderer, nullptr);
SDL_RenderPresent(renderer);
/* Open an audio device */
++argv; --argc;
if(InitAL(&argv, &argc))
{
std::cerr<< "Failed to set up audio device" <<std::endl;
return 1;
}
{ auto device = alcGetContextsDevice(alcGetCurrentContext());
if(alcIsExtensionPresent(device, "ALC_SOFT_device_clock"))
{
std::cout<< "Found ALC_SOFT_device_clock" <<std::endl;
alcGetInteger64vSOFT = reinterpret_cast<LPALCGETINTEGER64VSOFT>(
alcGetProcAddress(device, "alcGetInteger64vSOFT")
);
}
}
if(alIsExtensionPresent("AL_SOFT_source_latency"))
{
std::cout<< "Found AL_SOFT_source_latency" <<std::endl;
alGetSourcei64vSOFT = reinterpret_cast<LPALGETSOURCEI64VSOFT>(
alGetProcAddress("alGetSourcei64vSOFT")
);
}
#ifdef AL_SOFT_map_buffer
if(alIsExtensionPresent("AL_SOFTX_map_buffer"))
{
std::cout<< "Found AL_SOFT_map_buffer" <<std::endl;
alBufferStorageSOFT = reinterpret_cast<LPALBUFFERSTORAGESOFT>(
alGetProcAddress("alBufferStorageSOFT"));
alMapBufferSOFT = reinterpret_cast<LPALMAPBUFFERSOFT>(
alGetProcAddress("alMapBufferSOFT"));
alUnmapBufferSOFT = reinterpret_cast<LPALUNMAPBUFFERSOFT>(
alGetProcAddress("alUnmapBufferSOFT"));
}
#endif
#ifdef AL_SOFT_events
if(alIsExtensionPresent("AL_SOFTX_events"))
{
std::cout<< "Found AL_SOFT_events" <<std::endl;
alEventControlSOFT = reinterpret_cast<LPALEVENTCONTROLSOFT>(
alGetProcAddress("alEventControlSOFT"));
alEventCallbackSOFT = reinterpret_cast<LPALEVENTCALLBACKSOFT>(
alGetProcAddress("alEventCallbackSOFT"));
}
#endif
int fileidx = 0;
for(;fileidx < argc;++fileidx)
{
if(strcmp(argv[fileidx], "-direct") == 0)
{
if(!alIsExtensionPresent("AL_SOFT_direct_channels"))
std::cerr<< "AL_SOFT_direct_channels not supported for direct output" <<std::endl;
else
{
std::cout<< "Found AL_SOFT_direct_channels" <<std::endl;
EnableDirectOut = true;
}
}
else if(strcmp(argv[fileidx], "-wide") == 0)
{
if(!alIsExtensionPresent("AL_EXT_STEREO_ANGLES"))
std::cerr<< "AL_EXT_STEREO_ANGLES not supported for wide stereo" <<std::endl;
else
{
std::cout<< "Found AL_EXT_STEREO_ANGLES" <<std::endl;
EnableWideStereo = true;
}
}
else
break;
}
while(fileidx < argc && !movState)
{
movState = std::unique_ptr<MovieState>(new MovieState(argv[fileidx++]));
if(!movState->prepare()) movState = nullptr;
}
if(!movState)
{
std::cerr<< "Could not start a video" <<std::endl;
return 1;
}
movState->setTitle(screen);
/* Default to going to the next movie at the end of one. */
enum class EomAction {
Next, Quit
} eom_action = EomAction::Next;
seconds last_time(-1);
SDL_Event event;
while(1)
{
int have_evt = SDL_WaitEventTimeout(&event, 10);
auto cur_time = std::chrono::duration_cast<seconds>(movState->getMasterClock());
if(cur_time != last_time)
{
auto end_time = std::chrono::duration_cast<seconds>(movState->getDuration());
std::cout<< "\r "<<PrettyTime{cur_time}<<" / "<<PrettyTime{end_time} <<std::flush;
last_time = cur_time;
}
if(!have_evt) continue;
switch(event.type)
{
case SDL_KEYDOWN:
switch(event.key.keysym.sym)
{
case SDLK_ESCAPE:
movState->mQuit = true;
eom_action = EomAction::Quit;
break;
case SDLK_n:
movState->mQuit = true;
eom_action = EomAction::Next;
break;
default:
break;
}
break;
case SDL_WINDOWEVENT:
switch(event.window.event)
{
case SDL_WINDOWEVENT_RESIZED:
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderFillRect(renderer, nullptr);
break;
default:
break;
}
break;
case SDL_QUIT:
movState->mQuit = true;
eom_action = EomAction::Quit;
break;
case FF_UPDATE_EVENT:
reinterpret_cast<VideoState*>(event.user.data1)->updatePicture(
screen, renderer
);
break;
case FF_REFRESH_EVENT:
reinterpret_cast<VideoState*>(event.user.data1)->refreshTimer(
screen, renderer
);
break;
case FF_MOVIE_DONE_EVENT:
std::cout<<'\n';
last_time = seconds(-1);
if(eom_action != EomAction::Quit)
{
movState = nullptr;
while(fileidx < argc && !movState)
{
movState = std::unique_ptr<MovieState>(new MovieState(argv[fileidx++]));
if(!movState->prepare()) movState = nullptr;
}
if(movState)
{
movState->setTitle(screen);
break;
}
}
/* Nothing more to play. Shut everything down and quit. */
movState = nullptr;
CloseAL();
SDL_DestroyRenderer(renderer);
renderer = nullptr;
SDL_DestroyWindow(screen);
screen = nullptr;
SDL_Quit();
exit(0);
default:
break;
}
}
std::cerr<< "SDL_WaitEvent error - "<<SDL_GetError() <<std::endl;
return 1;
}