/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alcontext.h" #include "alSource.h" #include "alBuffer.h" #include "alListener.h" #include "alAuxEffectSlot.h" #include "sample_cvt.h" #include "alu.h" #include "alconfig.h" #include "ringbuffer.h" #include "cpu_caps.h" #include "mixer/defs.h" static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE, "MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!"); /* BSinc24 requires up to 23 extra samples before the current position, and 24 after. */ static_assert(MAX_RESAMPLE_PADDING >= 24, "MAX_RESAMPLE_PADDING must be at least 24!"); Resampler ResamplerDefault = LinearResampler; MixerFunc MixSamples = Mix_; RowMixerFunc MixRowSamples = MixRow_; static HrtfMixerFunc MixHrtfSamples = MixHrtf_; static HrtfMixerBlendFunc MixHrtfBlendSamples = MixHrtfBlend_; static MixerFunc SelectMixer() { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Mix_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Mix_; #endif return Mix_; } static RowMixerFunc SelectRowMixer() { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixRow_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixRow_; #endif return MixRow_; } static inline HrtfMixerFunc SelectHrtfMixer() { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtf_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtf_; #endif return MixHrtf_; } static inline HrtfMixerBlendFunc SelectHrtfBlendMixer() { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtfBlend_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtfBlend_; #endif return MixHrtfBlend_; } ResamplerFunc SelectResampler(Resampler resampler) { switch(resampler) { case PointResampler: return Resample_; case LinearResampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_; #endif #ifdef HAVE_SSE4_1 if((CPUCapFlags&CPU_CAP_SSE4_1)) return Resample_; #endif #ifdef HAVE_SSE2 if((CPUCapFlags&CPU_CAP_SSE2)) return Resample_; #endif return Resample_; case FIR4Resampler: return Resample_; case BSinc12Resampler: case BSinc24Resampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Resample_; #endif return Resample_; } return Resample_; } void aluInitMixer() { const char *str; if(ConfigValueStr(nullptr, nullptr, "resampler", &str)) { if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0) ResamplerDefault = PointResampler; else if(strcasecmp(str, "linear") == 0) ResamplerDefault = LinearResampler; else if(strcasecmp(str, "cubic") == 0) ResamplerDefault = FIR4Resampler; else if(strcasecmp(str, "bsinc12") == 0) ResamplerDefault = BSinc12Resampler; else if(strcasecmp(str, "bsinc24") == 0) ResamplerDefault = BSinc24Resampler; else if(strcasecmp(str, "bsinc") == 0) { WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str); ResamplerDefault = BSinc12Resampler; } else if(strcasecmp(str, "sinc4") == 0 || strcasecmp(str, "sinc8") == 0) { WARN("Resampler option \"%s\" is deprecated, using cubic\n", str); ResamplerDefault = FIR4Resampler; } else { char *end; long n = strtol(str, &end, 0); if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler)) ResamplerDefault = static_cast(n); else WARN("Invalid resampler: %s\n", str); } } MixHrtfBlendSamples = SelectHrtfBlendMixer(); MixHrtfSamples = SelectHrtfMixer(); MixSamples = SelectMixer(); MixRowSamples = SelectRowMixer(); } namespace { void SendSourceStoppedEvent(ALCcontext *context, ALuint id) { ALbitfieldSOFT enabledevt{context->EnabledEvts.load(std::memory_order_acquire)}; if(!(enabledevt&EventType_SourceStateChange)) return; RingBuffer *ring{context->AsyncEvents.get()}; auto evt_vec = ring->getWriteVector(); if(evt_vec.first.len < 1) return; AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_SourceStateChange}}; evt->u.srcstate.id = id; evt->u.srcstate.state = AL_STOPPED; ring->writeAdvance(1); context->EventSem.post(); } const ALfloat *DoFilters(BiquadFilter *lpfilter, BiquadFilter *hpfilter, ALfloat *RESTRICT dst, const ALfloat *RESTRICT src, ALsizei numsamples, int type) { switch(type) { case AF_None: lpfilter->passthru(numsamples); hpfilter->passthru(numsamples); break; case AF_LowPass: lpfilter->process(dst, src, numsamples); hpfilter->passthru(numsamples); return dst; case AF_HighPass: lpfilter->passthru(numsamples); hpfilter->process(dst, src, numsamples); return dst; case AF_BandPass: for(ALsizei i{0};i < numsamples;) { ALfloat temp[256]; ALsizei todo = mini(256, numsamples-i); lpfilter->process(temp, src+i, todo); hpfilter->process(dst+i, temp, todo); i += todo; } return dst; } return src; } /* Base template left undefined. Should be marked =delete, but Clang 3.8.1 * chokes on that given the inline specializations. */ template inline ALfloat LoadSample(typename FmtTypeTraits::Type val); template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return (val-128) * (1.0f/128.0f); } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return val * (1.0f/32768.0f); } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return val; } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return static_cast(val); } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return muLawDecompressionTable[val] * (1.0f/32768.0f); } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return aLawDecompressionTable[val] * (1.0f/32768.0f); } template inline void LoadSampleArray(ALfloat *RESTRICT dst, const void *src, ALint srcstep, const ptrdiff_t samples) { using SampleType = typename FmtTypeTraits::Type; const SampleType *ssrc = static_cast(src); for(ALsizei i{0};i < samples;i++) dst[i] += LoadSample(ssrc[i*srcstep]); } void LoadSamples(ALfloat *RESTRICT dst, const ALvoid *RESTRICT src, ALint srcstep, FmtType srctype, const ptrdiff_t samples) { #define HANDLE_FMT(T) case T: LoadSampleArray(dst, src, srcstep, samples); break switch(srctype) { HANDLE_FMT(FmtUByte); HANDLE_FMT(FmtShort); HANDLE_FMT(FmtFloat); HANDLE_FMT(FmtDouble); HANDLE_FMT(FmtMulaw); HANDLE_FMT(FmtAlaw); } #undef HANDLE_FMT } ALfloat *LoadBufferStatic(ALbufferlistitem *BufferListItem, ALbufferlistitem *&BufferLoopItem, const ALsizei NumChannels, const ALsizei SampleSize, const ALsizei chan, ALsizei DataPosInt, ALfloat *SrcData, const ALfloat *const SrcDataEnd) { /* TODO: For static sources, loop points are taken from the first buffer * (should be adjusted by any buffer offset, to possibly be added later). */ const ALbuffer *Buffer0{BufferListItem->buffers[0]}; const ALsizei LoopStart{Buffer0->LoopStart}; const ALsizei LoopEnd{Buffer0->LoopEnd}; ASSUME(LoopStart >= 0); ASSUME(LoopEnd > LoopStart); /* If current pos is beyond the loop range, do not loop */ if(!BufferLoopItem || DataPosInt >= LoopEnd) { const ptrdiff_t SizeToDo{SrcDataEnd - SrcData}; ASSUME(SizeToDo > 0); BufferLoopItem = nullptr; auto load_buffer = [DataPosInt,SrcData,NumChannels,SampleSize,chan,SizeToDo](ptrdiff_t CompLen, const ALbuffer *buffer) -> ptrdiff_t { if(DataPosInt >= buffer->SampleLen) return CompLen; /* Load what's left to play from the buffer */ const ptrdiff_t DataSize{std::min(SizeToDo, buffer->SampleLen-DataPosInt)}; CompLen = std::max(CompLen, DataSize); const ALbyte *Data{buffer->mData.data()}; Data += (DataPosInt*NumChannels + chan)*SampleSize; LoadSamples(SrcData, Data, NumChannels, buffer->mFmtType, DataSize); return CompLen; }; /* It's impossible to have a buffer list item with no entries. */ ASSUME(BufferListItem->num_buffers > 0); auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers; SrcData += std::accumulate(BufferListItem->buffers, buffers_end, ptrdiff_t{0}, load_buffer); } else { const ptrdiff_t SizeToDo{std::min(SrcDataEnd-SrcData, LoopEnd-DataPosInt)}; ASSUME(SizeToDo > 0); auto load_buffer = [DataPosInt,SrcData,NumChannels,SampleSize,chan,SizeToDo](ptrdiff_t CompLen, const ALbuffer *buffer) -> ptrdiff_t { if(DataPosInt >= buffer->SampleLen) return CompLen; /* Load what's left of this loop iteration */ const ptrdiff_t DataSize{std::min(SizeToDo, buffer->SampleLen-DataPosInt)}; CompLen = std::max(CompLen, DataSize); const ALbyte *Data{buffer->mData.data()}; Data += (DataPosInt*NumChannels + chan)*SampleSize; LoadSamples(SrcData, Data, NumChannels, buffer->mFmtType, DataSize); return CompLen; }; ASSUME(BufferListItem->num_buffers > 0); auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers; SrcData += std::accumulate(BufferListItem->buffers, buffers_end, ptrdiff_t{0}, load_buffer); const auto LoopSize = static_cast(LoopEnd - LoopStart); while(SrcData != SrcDataEnd) { const ptrdiff_t SizeToDo{std::min(SrcDataEnd-SrcData, LoopSize)}; ASSUME(SizeToDo > 0); auto load_buffer_loop = [LoopStart,SrcData,NumChannels,SampleSize,chan,SizeToDo](ptrdiff_t CompLen, const ALbuffer *buffer) -> ptrdiff_t { if(LoopStart >= buffer->SampleLen) return CompLen; const ptrdiff_t DataSize{std::min(SizeToDo, buffer->SampleLen-LoopStart)}; CompLen = std::max(CompLen, DataSize); const ALbyte *Data{buffer->mData.data()}; Data += (LoopStart*NumChannels + chan)*SampleSize; LoadSamples(SrcData, Data, NumChannels, buffer->mFmtType, DataSize); return CompLen; }; SrcData += std::accumulate(BufferListItem->buffers, buffers_end, ptrdiff_t{0}, load_buffer_loop); } } return SrcData; } ALfloat *LoadBufferQueue(ALbufferlistitem *BufferListItem, ALbufferlistitem *BufferLoopItem, const ALsizei NumChannels, const ALsizei SampleSize, const ALsizei chan, ALsizei DataPosInt, ALfloat *SrcData, const ALfloat *const SrcDataEnd) { /* Crawl the buffer queue to fill in the temp buffer */ while(BufferListItem && SrcData != SrcDataEnd) { if(DataPosInt >= BufferListItem->max_samples) { DataPosInt -= BufferListItem->max_samples; BufferListItem = BufferListItem->next.load(std::memory_order_acquire); if(!BufferListItem) BufferListItem = BufferLoopItem; continue; } const ptrdiff_t SizeToDo{SrcDataEnd - SrcData}; ASSUME(SizeToDo > 0); auto load_buffer = [DataPosInt,SrcData,NumChannels,SampleSize,chan,SizeToDo](ptrdiff_t CompLen, const ALbuffer *buffer) -> ptrdiff_t { if(!buffer) return CompLen; if(DataPosInt >= buffer->SampleLen) return CompLen; const ptrdiff_t DataSize{std::min(SizeToDo, buffer->SampleLen-DataPosInt)}; CompLen = std::max(CompLen, DataSize); const ALbyte *Data{buffer->mData.data()}; Data += (DataPosInt*NumChannels + chan)*SampleSize; LoadSamples(SrcData, Data, NumChannels, buffer->mFmtType, DataSize); return CompLen; }; ASSUME(BufferListItem->num_buffers > 0); auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers; SrcData += std::accumulate(BufferListItem->buffers, buffers_end, ptrdiff_t{0u}, load_buffer); if(SrcData == SrcDataEnd) break; DataPosInt = 0; BufferListItem = BufferListItem->next.load(std::memory_order_acquire); if(!BufferListItem) BufferListItem = BufferLoopItem; } return SrcData; } } // namespace void MixVoice(ALvoice *voice, ALvoice::State vstate, const ALuint SourceID, ALCcontext *Context, const ALsizei SamplesToDo) { static constexpr ALfloat SilentTarget[MAX_OUTPUT_CHANNELS]{}; ASSUME(SamplesToDo > 0); /* Get voice info */ const bool isstatic{(voice->mFlags&VOICE_IS_STATIC) != 0}; ALsizei DataPosInt{static_cast(voice->mPosition.load(std::memory_order_relaxed))}; ALsizei DataPosFrac{voice->mPositionFrac.load(std::memory_order_relaxed)}; ALbufferlistitem *BufferListItem{voice->mCurrentBuffer.load(std::memory_order_relaxed)}; ALbufferlistitem *BufferLoopItem{voice->mLoopBuffer.load(std::memory_order_relaxed)}; const ALsizei NumChannels{voice->mNumChannels}; const ALsizei SampleSize{voice->mSampleSize}; const ALint increment{voice->mStep}; ASSUME(DataPosInt >= 0); ASSUME(DataPosFrac >= 0); ASSUME(NumChannels > 0); ASSUME(SampleSize > 0); ASSUME(increment > 0); ALCdevice *Device{Context->Device}; const ALsizei IrSize{Device->mHrtf ? Device->mHrtf->irSize : 0}; ASSUME(IrSize >= 0); ResamplerFunc Resample{(increment == FRACTIONONE && DataPosFrac == 0) ? Resample_ : voice->mResampler}; ALsizei Counter{(voice->mFlags&VOICE_IS_FADING) ? SamplesToDo : 0}; if(!Counter) { /* No fading, just overwrite the old/current params. */ for(ALsizei chan{0};chan < NumChannels;chan++) { DirectParams &parms = voice->mDirect.Params[chan]; if(!(voice->mFlags&VOICE_HAS_HRTF)) std::copy(std::begin(parms.Gains.Target), std::end(parms.Gains.Target), std::begin(parms.Gains.Current)); else parms.Hrtf.Old = parms.Hrtf.Target; auto set_current = [chan](ALvoice::SendData &send) -> void { if(!send.Buffer) return; SendParams &parms = send.Params[chan]; std::copy(std::begin(parms.Gains.Target), std::end(parms.Gains.Target), std::begin(parms.Gains.Current)); }; std::for_each(voice->mSend.begin(), voice->mSend.end(), set_current); } } else if((voice->mFlags&VOICE_HAS_HRTF)) { for(ALsizei chan{0};chan < NumChannels;chan++) { DirectParams &parms = voice->mDirect.Params[chan]; if(!(parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD)) { /* The old HRTF params are silent, so overwrite the old * coefficients with the new, and reset the old gain to 0. The * future mix will then fade from silence. */ parms.Hrtf.Old = parms.Hrtf.Target; parms.Hrtf.Old.Gain = 0.0f; } } } ALsizei buffers_done{0}; ALsizei OutPos{0}; do { /* Figure out how many buffer samples will be needed */ ALsizei DstBufferSize{SamplesToDo - OutPos}; /* Calculate the last written dst sample pos. */ int64_t DataSize64{DstBufferSize - 1}; /* Calculate the last read src sample pos. */ DataSize64 = (DataSize64*increment + DataPosFrac) >> FRACTIONBITS; /* +1 to get the src sample count, include padding. */ DataSize64 += 1 + MAX_RESAMPLE_PADDING*2; auto SrcBufferSize = static_cast( mini64(DataSize64, BUFFERSIZE + MAX_RESAMPLE_PADDING*2 + 1)); if(SrcBufferSize > BUFFERSIZE + MAX_RESAMPLE_PADDING*2) { SrcBufferSize = BUFFERSIZE + MAX_RESAMPLE_PADDING*2; /* If the source buffer got saturated, we can't fill the desired * dst size. Figure out how many samples we can actually mix from * this. */ DataSize64 = SrcBufferSize - MAX_RESAMPLE_PADDING*2; DataSize64 = ((DataSize64<(mini64(DataSize64, DstBufferSize)); /* Some mixers like having a multiple of 4, so try to give that * unless this is the last update. */ if(DstBufferSize < SamplesToDo-OutPos) DstBufferSize &= ~3; } for(ALsizei chan{0};chan < NumChannels;chan++) { auto &SrcData = Device->SourceData; /* Load the previous samples into the source data first, and clear the rest. */ auto srciter = std::copy_n(voice->mResampleData[chan].mPrevSamples.begin(), MAX_RESAMPLE_PADDING, std::begin(SrcData)); std::fill(srciter, std::end(SrcData), 0.0f); auto srcdata_end = std::begin(SrcData) + SrcBufferSize; if(UNLIKELY(!BufferListItem)) srciter = std::copy( voice->mResampleData[chan].mPrevSamples.begin()+MAX_RESAMPLE_PADDING, voice->mResampleData[chan].mPrevSamples.end(), srciter); else if(isstatic) srciter = LoadBufferStatic(BufferListItem, BufferLoopItem, NumChannels, SampleSize, chan, DataPosInt, srciter, srcdata_end); else srciter = LoadBufferQueue(BufferListItem, BufferLoopItem, NumChannels, SampleSize, chan, DataPosInt, srciter, srcdata_end); if(UNLIKELY(srciter != srcdata_end)) { /* If the source buffer wasn't filled, copy the last sample for * the remaining buffer. Ideally it should have ended with * silence, but if not the gain fading should help avoid clicks * from sudden amplitude changes. */ const ALfloat sample{*(srciter-1)}; std::fill(srciter, srcdata_end, sample); } /* Store the last source samples used for next time. */ std::copy_n(&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS], voice->mResampleData[chan].mPrevSamples.size(), voice->mResampleData[chan].mPrevSamples.begin()); /* Resample, then apply ambisonic upsampling as needed. */ const ALfloat *ResampledData{Resample(&voice->mResampleState, &SrcData[MAX_RESAMPLE_PADDING], DataPosFrac, increment, Device->ResampledData, DstBufferSize)}; if((voice->mFlags&VOICE_IS_AMBISONIC)) { const ALfloat hfscale{voice->mResampleData[chan].mAmbiScale}; /* Beware the evil const_cast. It's safe since it's pointing to * either SrcData or Device->ResampledData (both non-const), * but the resample method takes its input as const float* and * may return it without copying to output, making it currently * unavoidable. */ voice->mResampleData[chan].mAmbiSplitter.applyHfScale( const_cast(ResampledData), hfscale, DstBufferSize); } /* Now filter and mix to the appropriate outputs. */ { DirectParams &parms = voice->mDirect.Params[chan]; const ALfloat *samples{DoFilters(&parms.LowPass, &parms.HighPass, Device->FilteredData, ResampledData, DstBufferSize, voice->mDirect.FilterType)}; if((voice->mFlags&VOICE_HAS_HRTF)) { const int OutLIdx{GetChannelIdxByName(Device->RealOut, FrontLeft)}; const int OutRIdx{GetChannelIdxByName(Device->RealOut, FrontRight)}; ASSUME(OutLIdx >= 0 && OutRIdx >= 0); auto &HrtfSamples = Device->HrtfSourceData; auto &AccumSamples = Device->HrtfAccumData; const ALfloat TargetGain{UNLIKELY(vstate == ALvoice::Stopping) ? 0.0f : parms.Hrtf.Target.Gain}; ALsizei fademix{0}; /* Copy the HRTF history and new input samples into a temp * buffer. */ auto src_iter = std::copy(parms.Hrtf.State.History.begin(), parms.Hrtf.State.History.end(), std::begin(HrtfSamples)); std::copy_n(samples, DstBufferSize, src_iter); /* Copy the last used samples back into the history buffer * for later. */ std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.State.History.size(), parms.Hrtf.State.History.begin()); /* Copy the current filtered values being accumulated into * the temp buffer. */ auto accum_iter = std::copy_n(parms.Hrtf.State.Values.begin(), parms.Hrtf.State.Values.size(), std::begin(AccumSamples)); /* Clear the accumulation buffer that will start getting * filled in. */ std::fill_n(accum_iter, DstBufferSize, float2{}); /* If fading, the old gain is not silence, and this is the * first mixing pass, fade between the IRs. */ if(Counter && (parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD) && OutPos == 0) { fademix = mini(DstBufferSize, 128); ALfloat gain{TargetGain}; /* The new coefficients need to fade in completely * since they're replacing the old ones. To keep the * gain fading consistent, interpolate between the old * and new target gains given how much of the fade time * this mix handles. */ if(LIKELY(Counter > fademix)) { const ALfloat a{static_cast(fademix) / static_cast(Counter)}; gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a); } MixHrtfParams hrtfparams; hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs; hrtfparams.Delay[0] = parms.Hrtf.Target.Delay[0]; hrtfparams.Delay[1] = parms.Hrtf.Target.Delay[1]; hrtfparams.Gain = 0.0f; hrtfparams.GainStep = gain / static_cast(fademix); MixHrtfBlendSamples( voice->mDirect.Buffer[OutLIdx], voice->mDirect.Buffer[OutRIdx], HrtfSamples, AccumSamples, OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams, fademix); /* Update the old parameters with the result. */ parms.Hrtf.Old = parms.Hrtf.Target; if(fademix < Counter) parms.Hrtf.Old.Gain = hrtfparams.Gain; else parms.Hrtf.Old.Gain = TargetGain; } if(LIKELY(fademix < DstBufferSize)) { const ALsizei todo{DstBufferSize - fademix}; ALfloat gain{TargetGain}; /* Interpolate the target gain if the gain fading lasts * longer than this mix. */ if(Counter > DstBufferSize) { const ALfloat a{static_cast(todo) / static_cast(Counter-fademix)}; gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a); } MixHrtfParams hrtfparams; hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs; hrtfparams.Delay[0] = parms.Hrtf.Target.Delay[0]; hrtfparams.Delay[1] = parms.Hrtf.Target.Delay[1]; hrtfparams.Gain = parms.Hrtf.Old.Gain; hrtfparams.GainStep = (gain - parms.Hrtf.Old.Gain) / static_cast(todo); MixHrtfSamples( voice->mDirect.Buffer[OutLIdx], voice->mDirect.Buffer[OutRIdx], HrtfSamples+fademix, AccumSamples+fademix, OutPos+fademix, IrSize, &hrtfparams, todo); /* Store the interpolated gain or the final target gain * depending if the fade is done. */ if(DstBufferSize < Counter) parms.Hrtf.Old.Gain = gain; else parms.Hrtf.Old.Gain = TargetGain; } /* Copy the new in-progress accumulation values back for * the next mix. */ std::copy_n(std::begin(AccumSamples) + DstBufferSize, parms.Hrtf.State.Values.size(), parms.Hrtf.State.Values.begin()); } else if((voice->mFlags&VOICE_HAS_NFC)) { const ALfloat *TargetGains{UNLIKELY(vstate == ALvoice::Stopping) ? SilentTarget : parms.Gains.Target}; MixSamples(samples, voice->mDirect.ChannelsPerOrder[0], voice->mDirect.Buffer, parms.Gains.Current, TargetGains, Counter, OutPos, DstBufferSize); ALfloat (&nfcsamples)[BUFFERSIZE] = Device->NfcSampleData; ALsizei chanoffset{voice->mDirect.ChannelsPerOrder[0]}; using FilterProc = void (NfcFilter::*)(float*,const float*,int); auto apply_nfc = [voice,&parms,samples,TargetGains,DstBufferSize,Counter,OutPos,&chanoffset,&nfcsamples](FilterProc process, ALsizei order) -> void { if(voice->mDirect.ChannelsPerOrder[order] < 1) return; (parms.NFCtrlFilter.*process)(nfcsamples, samples, DstBufferSize); MixSamples(nfcsamples, voice->mDirect.ChannelsPerOrder[order], voice->mDirect.Buffer+chanoffset, parms.Gains.Current+chanoffset, TargetGains+chanoffset, Counter, OutPos, DstBufferSize); chanoffset += voice->mDirect.ChannelsPerOrder[order]; }; apply_nfc(&NfcFilter::process1, 1); apply_nfc(&NfcFilter::process2, 2); apply_nfc(&NfcFilter::process3, 3); } else { const ALfloat *TargetGains{UNLIKELY(vstate == ALvoice::Stopping) ? SilentTarget : parms.Gains.Target}; MixSamples(samples, voice->mDirect.Channels, voice->mDirect.Buffer, parms.Gains.Current, TargetGains, Counter, OutPos, DstBufferSize); } } ALfloat (&FilterBuf)[BUFFERSIZE] = Device->FilteredData; auto mix_send = [vstate,Counter,OutPos,DstBufferSize,chan,ResampledData,&FilterBuf](ALvoice::SendData &send) -> void { if(!send.Buffer) return; SendParams &parms = send.Params[chan]; const ALfloat *samples{DoFilters(&parms.LowPass, &parms.HighPass, FilterBuf, ResampledData, DstBufferSize, send.FilterType)}; const ALfloat *TargetGains{UNLIKELY(vstate==ALvoice::Stopping) ? SilentTarget : parms.Gains.Target}; MixSamples(samples, send.Channels, send.Buffer, parms.Gains.Current, TargetGains, Counter, OutPos, DstBufferSize); }; std::for_each(voice->mSend.begin(), voice->mSend.end(), mix_send); } /* Update positions */ DataPosFrac += increment*DstBufferSize; DataPosInt += DataPosFrac>>FRACTIONBITS; DataPosFrac &= FRACTIONMASK; OutPos += DstBufferSize; Counter = maxi(DstBufferSize, Counter) - DstBufferSize; if(UNLIKELY(!BufferListItem)) { /* Do nothing extra when there's no buffers. */ } else if(isstatic) { if(BufferLoopItem) { /* Handle looping static source */ const ALbuffer *Buffer{BufferListItem->buffers[0]}; const ALsizei LoopStart{Buffer->LoopStart}; const ALsizei LoopEnd{Buffer->LoopEnd}; if(DataPosInt >= LoopEnd) { assert(LoopEnd > LoopStart); DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart; } } else { /* Handle non-looping static source */ if(DataPosInt >= BufferListItem->max_samples) { if(LIKELY(vstate == ALvoice::Playing)) vstate = ALvoice::Stopped; BufferListItem = nullptr; break; } } } else while(1) { /* Handle streaming source */ if(BufferListItem->max_samples > DataPosInt) break; DataPosInt -= BufferListItem->max_samples; buffers_done += BufferListItem->num_buffers; BufferListItem = BufferListItem->next.load(std::memory_order_relaxed); if(!BufferListItem && !(BufferListItem=BufferLoopItem)) { if(LIKELY(vstate == ALvoice::Playing)) vstate = ALvoice::Stopped; break; } } } while(OutPos < SamplesToDo); voice->mFlags |= VOICE_IS_FADING; /* Don't update positions and buffers if we were stopping. */ if(UNLIKELY(vstate == ALvoice::Stopping)) { voice->mPlayState.store(ALvoice::Stopped, std::memory_order_release); return; } /* Update voice info */ voice->mPosition.store(DataPosInt, std::memory_order_relaxed); voice->mPositionFrac.store(DataPosFrac, std::memory_order_relaxed); voice->mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed); if(vstate == ALvoice::Stopped) { voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed); voice->mSourceID.store(0u, std::memory_order_relaxed); } std::atomic_thread_fence(std::memory_order_release); /* Send any events now, after the position/buffer info was updated. */ ALbitfieldSOFT enabledevt{Context->EnabledEvts.load(std::memory_order_acquire)}; if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted)) { RingBuffer *ring{Context->AsyncEvents.get()}; auto evt_vec = ring->getWriteVector(); if(evt_vec.first.len > 0) { AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_BufferCompleted}}; evt->u.bufcomp.id = SourceID; evt->u.bufcomp.count = buffers_done; ring->writeAdvance(1); Context->EventSem.post(); } } if(vstate == ALvoice::Stopped) { /* If the voice just ended, set it to Stopping so the next render * ensures any residual noise fades to 0 amplitude. */ voice->mPlayState.store(ALvoice::Stopping, std::memory_order_release); SendSourceStoppedEvent(Context, SourceID); } }