#include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alu.h" #include "hrtf.h" #include "defs.h" #include "hrtfbase.h" template<> const ALfloat *Resample_(const InterpState* UNUSED(state), const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) { const int32x4_t increment4 = vdupq_n_s32(increment*4); const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE); const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK); alignas(16) ALsizei pos_[4], frac_[4]; int32x4_t pos4, frac4; ALsizei todo, pos, i; ASSUME(frac >= 0); ASSUME(increment > 0); ASSUME(dstlen > 0); InitiatePositionArrays(frac, increment, frac_, pos_, 4); frac4 = vld1q_s32(frac_); pos4 = vld1q_s32(pos_); todo = dstlen & ~3; for(i = 0;i < todo;i += 4) { const int pos0 = vgetq_lane_s32(pos4, 0); const int pos1 = vgetq_lane_s32(pos4, 1); const int pos2 = vgetq_lane_s32(pos4, 2); const int pos3 = vgetq_lane_s32(pos4, 3); const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]}; const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]}; /* val1 + (val2-val1)*mu */ const float32x4_t r0 = vsubq_f32(val2, val1); const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4); const float32x4_t out = vmlaq_f32(val1, mu, r0); vst1q_f32(&dst[i], out); frac4 = vaddq_s32(frac4, increment4); pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS)); frac4 = vandq_s32(frac4, fracMask4); } /* NOTE: These four elements represent the position *after* the last four * samples, so the lowest element is the next position to resample. */ pos = vgetq_lane_s32(pos4, 0); frac = vgetq_lane_s32(frac4, 0); for(;i < dstlen;++i) { dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); frac += increment; pos += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } template<> const ALfloat *Resample_(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) { const ALfloat *const filter = state->bsinc.filter; const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf); const ALsizei m = state->bsinc.m; const float32x4_t *fil, *scd, *phd, *spd; ALsizei pi, i, j, offset; float32x4_t r4; ALfloat pf; ASSUME(m > 0); ASSUME(dstlen > 0); ASSUME(increment > 0); ASSUME(frac >= 0); src -= state->bsinc.l; for(i = 0;i < dstlen;i++) { // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) pi = frac >> FRAC_PHASE_BITDIFF; pf = (frac & ((1<> 2; const float32x4_t pf4 = vdupq_n_f32(pf); ASSUME(count > 0); for(j = 0;j < count;j++) { /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ const float32x4_t f4 = vmlaq_f32( vmlaq_f32(fil[j], sf4, scd[j]), pf4, vmlaq_f32(phd[j], sf4, spd[j]) ); /* r += f*src */ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j*4])); } } r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)), vrev64_f32(vget_low_f32(r4)))); dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize, const HrirArray &Coeffs, const ALfloat left, const ALfloat right) { ASSUME(IrSize >= 2); float32x4_t leftright4; { float32x2_t leftright2 = vdup_n_f32(0.0); leftright2 = vset_lane_f32(left, leftright2, 0); leftright2 = vset_lane_f32(right, leftright2, 1); leftright4 = vcombine_f32(leftright2, leftright2); } for(ALsizei c{0};c < IrSize;c += 2) { float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[c ][0]), vld1_f32((float32_t*)&Values[c+1][0])); float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]); vals = vmlaq_f32(vals, coefs, leftright4); vst1_f32((float32_t*)&Values[c ][0], vget_low_f32(vals)); vst1_f32((float32_t*)&Values[c+1][0], vget_high_f32(vals)); } } template<> void MixHrtf_(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data, float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize, MixHrtfParams *hrtfparams, const ALsizei BufferSize) { MixHrtfBase(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, hrtfparams, BufferSize); } template<> void MixHrtfBlend_(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data, float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize, const HrtfParams *oldparams, MixHrtfParams *newparams, const ALsizei BufferSize) { MixHrtfBlendBase(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, oldparams, newparams, BufferSize); } template<> void MixDirectHrtf_(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat (*data)[BUFFERSIZE], float2 *RESTRICT AccumSamples, DirectHrtfState *State, const ALsizei NumChans, const ALsizei BufferSize) { MixDirectHrtfBase(LeftOut, RightOut, data, AccumSamples, State, NumChans, BufferSize); } template<> void Mix_(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE], ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, const ALsizei BufferSize) { ASSUME(OutChans > 0); ASSUME(BufferSize > 0); const ALfloat delta{(Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f}; for(ALsizei c{0};c < OutChans;c++) { ALfloat *RESTRICT dst{al::assume_aligned<16>(&OutBuffer[c][OutPos])}; ALsizei pos{0}; ALfloat gain{CurrentGains[c]}; const ALfloat diff{TargetGains[c] - gain}; if(std::fabs(diff) > std::numeric_limits::epsilon()) { ALsizei minsize{mini(BufferSize, Counter)}; const ALfloat step{diff * delta}; ALfloat step_count{0.0f}; /* Mix with applying gain steps in aligned multiples of 4. */ if(LIKELY(minsize > 3)) { const float32x4_t four4{vdupq_n_f32(4.0f)}; const float32x4_t step4{vdupq_n_f32(step)}; const float32x4_t gain4{vdupq_n_f32(gain)}; float32x4_t step_count4{vsetq_lane_f32(0.0f, vsetq_lane_f32(1.0f, vsetq_lane_f32(2.0f, vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3), 2), 1), 0 )}; ALsizei todo{minsize >> 2}; do { const float32x4_t val4 = vld1q_f32(&data[pos]); float32x4_t dry4 = vld1q_f32(&dst[pos]); dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); step_count4 = vaddq_f32(step_count4, four4); vst1q_f32(&dst[pos], dry4); pos += 4; } while(--todo); /* NOTE: step_count4 now represents the next four counts after * the last four mixed samples, so the lowest element * represents the next step count to apply. */ step_count = vgetq_lane_f32(step_count4, 0); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ for(;pos < minsize;pos++) { dst[pos] += data[pos]*(gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = TargetGains[c]; else gain += step*step_count; CurrentGains[c] = gain; /* Mix until pos is aligned with 4 or the mix is done. */ minsize = mini(BufferSize, (pos+3)&~3); for(;pos < minsize;pos++) dst[pos] += data[pos]*gain; } if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; if(LIKELY(BufferSize-pos > 3)) { ALsizei todo{(BufferSize-pos) >> 2}; const float32x4_t gain4 = vdupq_n_f32(gain); do { const float32x4_t val4 = vld1q_f32(&data[pos]); float32x4_t dry4 = vld1q_f32(&dst[pos]); dry4 = vmlaq_f32(dry4, val4, gain4); vst1q_f32(&dst[pos], dry4); pos += 4; } while(--todo); } for(;pos < BufferSize;pos++) dst[pos] += data[pos]*gain; } } template<> void MixRow_(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE], const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize) { ASSUME(InChans > 0); ASSUME(BufferSize > 0); for(ALsizei c{0};c < InChans;c++) { const ALfloat *RESTRICT src{al::assume_aligned<16>(&data[c][InPos])}; ALsizei pos{0}; const ALfloat gain{Gains[c]}; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; if(LIKELY(BufferSize > 3)) { ALsizei todo{BufferSize >> 2}; float32x4_t gain4{vdupq_n_f32(gain)}; do { const float32x4_t val4 = vld1q_f32(&src[pos]); float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]); dry4 = vmlaq_f32(dry4, val4, gain4); vst1q_f32(&OutBuffer[pos], dry4); pos += 4; } while(--todo); } for(;pos < BufferSize;pos++) OutBuffer[pos] += src[pos]*gain; } }