/** * OpenAL cross platform audio library * Copyright (C) 2011 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "wasapi.h" #define WIN32_LEAN_AND_MEAN #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef _WAVEFORMATEXTENSIBLE_ #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "albit.h" #include "alnumeric.h" #include "comptr.h" #include "core/converter.h" #include "core/device.h" #include "core/helpers.h" #include "core/logging.h" #include "ringbuffer.h" #include "strutils.h" #include "threads.h" /* Some headers seem to define these as macros for __uuidof, which is annoying * since some headers don't declare them at all. Hopefully the ifdef is enough * to tell if they need to be declared. */ #ifndef KSDATAFORMAT_SUBTYPE_PCM DEFINE_GUID(KSDATAFORMAT_SUBTYPE_PCM, 0x00000001, 0x0000, 0x0010, 0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71); #endif #ifndef KSDATAFORMAT_SUBTYPE_IEEE_FLOAT DEFINE_GUID(KSDATAFORMAT_SUBTYPE_IEEE_FLOAT, 0x00000003, 0x0000, 0x0010, 0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71); #endif DEFINE_DEVPROPKEY(DEVPKEY_Device_FriendlyName, 0xa45c254e, 0xdf1c, 0x4efd, 0x80,0x20, 0x67,0xd1,0x46,0xa8,0x50,0xe0, 14); DEFINE_PROPERTYKEY(PKEY_AudioEndpoint_FormFactor, 0x1da5d803, 0xd492, 0x4edd, 0x8c,0x23, 0xe0,0xc0,0xff,0xee,0x7f,0x0e, 0); DEFINE_PROPERTYKEY(PKEY_AudioEndpoint_GUID, 0x1da5d803, 0xd492, 0x4edd, 0x8c, 0x23,0xe0, 0xc0,0xff,0xee,0x7f,0x0e, 4 ); namespace { using std::chrono::milliseconds; using std::chrono::seconds; using ReferenceTime = std::chrono::duration>; inline constexpr ReferenceTime operator "" _reftime(unsigned long long int n) noexcept { return ReferenceTime{static_cast(n)}; } #define MONO SPEAKER_FRONT_CENTER #define STEREO (SPEAKER_FRONT_LEFT|SPEAKER_FRONT_RIGHT) #define QUAD (SPEAKER_FRONT_LEFT|SPEAKER_FRONT_RIGHT|SPEAKER_BACK_LEFT|SPEAKER_BACK_RIGHT) #define X5DOT1 (SPEAKER_FRONT_LEFT|SPEAKER_FRONT_RIGHT|SPEAKER_FRONT_CENTER|SPEAKER_LOW_FREQUENCY|SPEAKER_SIDE_LEFT|SPEAKER_SIDE_RIGHT) #define X5DOT1REAR (SPEAKER_FRONT_LEFT|SPEAKER_FRONT_RIGHT|SPEAKER_FRONT_CENTER|SPEAKER_LOW_FREQUENCY|SPEAKER_BACK_LEFT|SPEAKER_BACK_RIGHT) #define X6DOT1 (SPEAKER_FRONT_LEFT|SPEAKER_FRONT_RIGHT|SPEAKER_FRONT_CENTER|SPEAKER_LOW_FREQUENCY|SPEAKER_BACK_CENTER|SPEAKER_SIDE_LEFT|SPEAKER_SIDE_RIGHT) #define X7DOT1 (SPEAKER_FRONT_LEFT|SPEAKER_FRONT_RIGHT|SPEAKER_FRONT_CENTER|SPEAKER_LOW_FREQUENCY|SPEAKER_BACK_LEFT|SPEAKER_BACK_RIGHT|SPEAKER_SIDE_LEFT|SPEAKER_SIDE_RIGHT) constexpr inline DWORD MaskFromTopBits(DWORD b) noexcept { b |= b>>1; b |= b>>2; b |= b>>4; b |= b>>8; b |= b>>16; return b; } constexpr DWORD MonoMask{MaskFromTopBits(MONO)}; constexpr DWORD StereoMask{MaskFromTopBits(STEREO)}; constexpr DWORD QuadMask{MaskFromTopBits(QUAD)}; constexpr DWORD X51Mask{MaskFromTopBits(X5DOT1)}; constexpr DWORD X51RearMask{MaskFromTopBits(X5DOT1REAR)}; constexpr DWORD X61Mask{MaskFromTopBits(X6DOT1)}; constexpr DWORD X71Mask{MaskFromTopBits(X7DOT1)}; constexpr char DevNameHead[] = "OpenAL Soft on "; constexpr size_t DevNameHeadLen{al::size(DevNameHead) - 1}; /* Scales the given reftime value, rounding the result. */ inline uint RefTime2Samples(const ReferenceTime &val, uint srate) { const auto retval = (val*srate + ReferenceTime{seconds{1}}/2) / seconds{1}; return static_cast(mini64(retval, std::numeric_limits::max())); } class GuidPrinter { char mMsg[64]; public: GuidPrinter(const GUID &guid) { std::snprintf(mMsg, al::size(mMsg), "{%08lx-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x}", DWORD{guid.Data1}, guid.Data2, guid.Data3, guid.Data4[0], guid.Data4[1], guid.Data4[2], guid.Data4[3], guid.Data4[4], guid.Data4[5], guid.Data4[6], guid.Data4[7]); } const char *c_str() const { return mMsg; } }; struct PropVariant { PROPVARIANT mProp; public: PropVariant() { PropVariantInit(&mProp); } ~PropVariant() { clear(); } void clear() { PropVariantClear(&mProp); } PROPVARIANT* get() noexcept { return &mProp; } PROPVARIANT& operator*() noexcept { return mProp; } const PROPVARIANT& operator*() const noexcept { return mProp; } PROPVARIANT* operator->() noexcept { return &mProp; } const PROPVARIANT* operator->() const noexcept { return &mProp; } }; struct DevMap { std::string name; std::string endpoint_guid; // obtained from PKEY_AudioEndpoint_GUID , set to "Unknown device GUID" if absent. std::wstring devid; template DevMap(T0&& name_, T1&& guid_, T2&& devid_) : name{std::forward(name_)} , endpoint_guid{std::forward(guid_)} , devid{std::forward(devid_)} { } }; bool checkName(const al::vector &list, const std::string &name) { auto match_name = [&name](const DevMap &entry) -> bool { return entry.name == name; }; return std::find_if(list.cbegin(), list.cend(), match_name) != list.cend(); } al::vector PlaybackDevices; al::vector CaptureDevices; using NameGUIDPair = std::pair; NameGUIDPair get_device_name_and_guid(IMMDevice *device) { static constexpr char UnknownName[]{"Unknown Device Name"}; static constexpr char UnknownGuid[]{"Unknown Device GUID"}; std::string name, guid; ComPtr ps; HRESULT hr = device->OpenPropertyStore(STGM_READ, ps.getPtr()); if(FAILED(hr)) { WARN("OpenPropertyStore failed: 0x%08lx\n", hr); return std::make_pair(UnknownName, UnknownGuid); } PropVariant pvprop; hr = ps->GetValue(reinterpret_cast(DEVPKEY_Device_FriendlyName), pvprop.get()); if(FAILED(hr)) { WARN("GetValue Device_FriendlyName failed: 0x%08lx\n", hr); name += UnknownName; } else if(pvprop->vt == VT_LPWSTR) name += wstr_to_utf8(pvprop->pwszVal); else { WARN("Unexpected PROPVARIANT type: 0x%04x\n", pvprop->vt); name += UnknownName; } pvprop.clear(); hr = ps->GetValue(reinterpret_cast(PKEY_AudioEndpoint_GUID), pvprop.get()); if(FAILED(hr)) { WARN("GetValue AudioEndpoint_GUID failed: 0x%08lx\n", hr); guid = UnknownGuid; } else if(pvprop->vt == VT_LPWSTR) guid = wstr_to_utf8(pvprop->pwszVal); else { WARN("Unexpected PROPVARIANT type: 0x%04x\n", pvprop->vt); guid = UnknownGuid; } return std::make_pair(std::move(name), std::move(guid)); } EndpointFormFactor get_device_formfactor(IMMDevice *device) { ComPtr ps; HRESULT hr{device->OpenPropertyStore(STGM_READ, ps.getPtr())}; if(FAILED(hr)) { WARN("OpenPropertyStore failed: 0x%08lx\n", hr); return UnknownFormFactor; } EndpointFormFactor formfactor{UnknownFormFactor}; PropVariant pvform; hr = ps->GetValue(PKEY_AudioEndpoint_FormFactor, pvform.get()); if(FAILED(hr)) WARN("GetValue AudioEndpoint_FormFactor failed: 0x%08lx\n", hr); else if(pvform->vt == VT_UI4) formfactor = static_cast(pvform->ulVal); else if(pvform->vt != VT_EMPTY) WARN("Unexpected PROPVARIANT type: 0x%04x\n", pvform->vt); return formfactor; } void add_device(IMMDevice *device, const WCHAR *devid, al::vector &list) { for(auto &entry : list) { if(entry.devid == devid) return; } auto name_guid = get_device_name_and_guid(device); int count{1}; std::string newname{name_guid.first}; while(checkName(list, newname)) { newname = name_guid.first; newname += " #"; newname += std::to_string(++count); } list.emplace_back(std::move(newname), std::move(name_guid.second), devid); const DevMap &newentry = list.back(); TRACE("Got device \"%s\", \"%s\", \"%ls\"\n", newentry.name.c_str(), newentry.endpoint_guid.c_str(), newentry.devid.c_str()); } WCHAR *get_device_id(IMMDevice *device) { WCHAR *devid; const HRESULT hr{device->GetId(&devid)}; if(FAILED(hr)) { ERR("Failed to get device id: %lx\n", hr); return nullptr; } return devid; } void probe_devices(IMMDeviceEnumerator *devenum, EDataFlow flowdir, al::vector &list) { al::vector{}.swap(list); ComPtr coll; HRESULT hr{devenum->EnumAudioEndpoints(flowdir, DEVICE_STATE_ACTIVE, coll.getPtr())}; if(FAILED(hr)) { ERR("Failed to enumerate audio endpoints: 0x%08lx\n", hr); return; } UINT count{0}; hr = coll->GetCount(&count); if(SUCCEEDED(hr) && count > 0) list.reserve(count); ComPtr device; hr = devenum->GetDefaultAudioEndpoint(flowdir, eMultimedia, device.getPtr()); if(SUCCEEDED(hr)) { if(WCHAR *devid{get_device_id(device.get())}) { add_device(device.get(), devid, list); CoTaskMemFree(devid); } device = nullptr; } for(UINT i{0};i < count;++i) { hr = coll->Item(i, device.getPtr()); if(FAILED(hr)) continue; if(WCHAR *devid{get_device_id(device.get())}) { add_device(device.get(), devid, list); CoTaskMemFree(devid); } device = nullptr; } } bool MakeExtensible(WAVEFORMATEXTENSIBLE *out, const WAVEFORMATEX *in) { *out = WAVEFORMATEXTENSIBLE{}; if(in->wFormatTag == WAVE_FORMAT_EXTENSIBLE) { *out = *CONTAINING_RECORD(in, const WAVEFORMATEXTENSIBLE, Format); out->Format.cbSize = sizeof(*out) - sizeof(out->Format); } else if(in->wFormatTag == WAVE_FORMAT_PCM) { out->Format = *in; out->Format.cbSize = 0; out->Samples.wValidBitsPerSample = out->Format.wBitsPerSample; if(out->Format.nChannels == 1) out->dwChannelMask = MONO; else if(out->Format.nChannels == 2) out->dwChannelMask = STEREO; else ERR("Unhandled PCM channel count: %d\n", out->Format.nChannels); out->SubFormat = KSDATAFORMAT_SUBTYPE_PCM; } else if(in->wFormatTag == WAVE_FORMAT_IEEE_FLOAT) { out->Format = *in; out->Format.cbSize = 0; out->Samples.wValidBitsPerSample = out->Format.wBitsPerSample; if(out->Format.nChannels == 1) out->dwChannelMask = MONO; else if(out->Format.nChannels == 2) out->dwChannelMask = STEREO; else ERR("Unhandled IEEE float channel count: %d\n", out->Format.nChannels); out->SubFormat = KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; } else { ERR("Unhandled format tag: 0x%04x\n", in->wFormatTag); return false; } return true; } void TraceFormat(const char *msg, const WAVEFORMATEX *format) { constexpr size_t fmtex_extra_size{sizeof(WAVEFORMATEXTENSIBLE)-sizeof(WAVEFORMATEX)}; if(format->wFormatTag == WAVE_FORMAT_EXTENSIBLE && format->cbSize >= fmtex_extra_size) { const WAVEFORMATEXTENSIBLE *fmtex{ CONTAINING_RECORD(format, const WAVEFORMATEXTENSIBLE, Format)}; TRACE("%s:\n" " FormatTag = 0x%04x\n" " Channels = %d\n" " SamplesPerSec = %lu\n" " AvgBytesPerSec = %lu\n" " BlockAlign = %d\n" " BitsPerSample = %d\n" " Size = %d\n" " Samples = %d\n" " ChannelMask = 0x%lx\n" " SubFormat = %s\n", msg, fmtex->Format.wFormatTag, fmtex->Format.nChannels, fmtex->Format.nSamplesPerSec, fmtex->Format.nAvgBytesPerSec, fmtex->Format.nBlockAlign, fmtex->Format.wBitsPerSample, fmtex->Format.cbSize, fmtex->Samples.wReserved, fmtex->dwChannelMask, GuidPrinter{fmtex->SubFormat}.c_str()); } else TRACE("%s:\n" " FormatTag = 0x%04x\n" " Channels = %d\n" " SamplesPerSec = %lu\n" " AvgBytesPerSec = %lu\n" " BlockAlign = %d\n" " BitsPerSample = %d\n" " Size = %d\n", msg, format->wFormatTag, format->nChannels, format->nSamplesPerSec, format->nAvgBytesPerSec, format->nBlockAlign, format->wBitsPerSample, format->cbSize); } enum class MsgType { OpenDevice, ReopenDevice, ResetDevice, StartDevice, StopDevice, CloseDevice, EnumeratePlayback, EnumerateCapture, Count, QuitThread = Count }; constexpr char MessageStr[static_cast(MsgType::Count)][20]{ "Open Device", "Reopen Device", "Reset Device", "Start Device", "Stop Device", "Close Device", "Enumerate Playback", "Enumerate Capture" }; /* Proxy interface used by the message handler. */ struct WasapiProxy { virtual ~WasapiProxy() = default; virtual HRESULT openProxy(const char *name) = 0; virtual void closeProxy() = 0; virtual HRESULT resetProxy() = 0; virtual HRESULT startProxy() = 0; virtual void stopProxy() = 0; struct Msg { MsgType mType; WasapiProxy *mProxy; const char *mParam; std::promise mPromise; explicit operator bool() const noexcept { return mType != MsgType::QuitThread; } }; static std::deque mMsgQueue; static std::mutex mMsgQueueLock; static std::condition_variable mMsgQueueCond; std::future pushMessage(MsgType type, const char *param=nullptr) { std::promise promise; std::future future{promise.get_future()}; { std::lock_guard _{mMsgQueueLock}; mMsgQueue.emplace_back(Msg{type, this, param, std::move(promise)}); } mMsgQueueCond.notify_one(); return future; } static std::future pushMessageStatic(MsgType type) { std::promise promise; std::future future{promise.get_future()}; { std::lock_guard _{mMsgQueueLock}; mMsgQueue.emplace_back(Msg{type, nullptr, nullptr, std::move(promise)}); } mMsgQueueCond.notify_one(); return future; } static Msg popMessage() { std::unique_lock lock{mMsgQueueLock}; mMsgQueueCond.wait(lock, []{return !mMsgQueue.empty();}); Msg msg{std::move(mMsgQueue.front())}; mMsgQueue.pop_front(); return msg; } static int messageHandler(std::promise *promise); }; std::deque WasapiProxy::mMsgQueue; std::mutex WasapiProxy::mMsgQueueLock; std::condition_variable WasapiProxy::mMsgQueueCond; int WasapiProxy::messageHandler(std::promise *promise) { TRACE("Starting message thread\n"); HRESULT cohr{CoInitializeEx(nullptr, COINIT_MULTITHREADED)}; if(FAILED(cohr)) { WARN("Failed to initialize COM: 0x%08lx\n", cohr); promise->set_value(cohr); return 0; } void *ptr{}; HRESULT hr{CoCreateInstance(CLSID_MMDeviceEnumerator, nullptr, CLSCTX_INPROC_SERVER, IID_IMMDeviceEnumerator, &ptr)}; if(FAILED(hr)) { WARN("Failed to create IMMDeviceEnumerator instance: 0x%08lx\n", hr); promise->set_value(hr); CoUninitialize(); return 0; } static_cast(ptr)->Release(); CoUninitialize(); TRACE("Message thread initialization complete\n"); promise->set_value(S_OK); promise = nullptr; TRACE("Starting message loop\n"); uint deviceCount{0}; while(Msg msg{popMessage()}) { TRACE("Got message \"%s\" (0x%04x, this=%p, param=%p)\n", MessageStr[static_cast(msg.mType)], static_cast(msg.mType), static_cast(msg.mProxy), static_cast(msg.mParam)); switch(msg.mType) { case MsgType::OpenDevice: hr = cohr = S_OK; if(++deviceCount == 1) hr = cohr = CoInitializeEx(nullptr, COINIT_MULTITHREADED); if(SUCCEEDED(hr)) hr = msg.mProxy->openProxy(msg.mParam); msg.mPromise.set_value(hr); if(FAILED(hr)) { if(--deviceCount == 0 && SUCCEEDED(cohr)) CoUninitialize(); } continue; case MsgType::ReopenDevice: hr = msg.mProxy->openProxy(msg.mParam); msg.mPromise.set_value(hr); continue; case MsgType::ResetDevice: hr = msg.mProxy->resetProxy(); msg.mPromise.set_value(hr); continue; case MsgType::StartDevice: hr = msg.mProxy->startProxy(); msg.mPromise.set_value(hr); continue; case MsgType::StopDevice: msg.mProxy->stopProxy(); msg.mPromise.set_value(S_OK); continue; case MsgType::CloseDevice: msg.mProxy->closeProxy(); msg.mPromise.set_value(S_OK); if(--deviceCount == 0) CoUninitialize(); continue; case MsgType::EnumeratePlayback: case MsgType::EnumerateCapture: hr = cohr = S_OK; if(++deviceCount == 1) hr = cohr = CoInitializeEx(nullptr, COINIT_MULTITHREADED); if(SUCCEEDED(hr)) hr = CoCreateInstance(CLSID_MMDeviceEnumerator, nullptr, CLSCTX_INPROC_SERVER, IID_IMMDeviceEnumerator, &ptr); if(FAILED(hr)) msg.mPromise.set_value(hr); else { ComPtr enumerator{static_cast(ptr)}; if(msg.mType == MsgType::EnumeratePlayback) probe_devices(enumerator.get(), eRender, PlaybackDevices); else if(msg.mType == MsgType::EnumerateCapture) probe_devices(enumerator.get(), eCapture, CaptureDevices); msg.mPromise.set_value(S_OK); } if(--deviceCount == 0 && SUCCEEDED(cohr)) CoUninitialize(); continue; case MsgType::QuitThread: break; } ERR("Unexpected message: %u\n", static_cast(msg.mType)); msg.mPromise.set_value(E_FAIL); } TRACE("Message loop finished\n"); return 0; } struct WasapiPlayback final : public BackendBase, WasapiProxy { WasapiPlayback(DeviceBase *device) noexcept : BackendBase{device} { } ~WasapiPlayback() override; int mixerProc(); void open(const char *name) override; HRESULT openProxy(const char *name) override; void closeProxy() override; bool reset() override; HRESULT resetProxy() override; void start() override; HRESULT startProxy() override; void stop() override; void stopProxy() override; ClockLatency getClockLatency() override; HRESULT mOpenStatus{E_FAIL}; ComPtr mMMDev{nullptr}; ComPtr mClient{nullptr}; ComPtr mRender{nullptr}; HANDLE mNotifyEvent{nullptr}; UINT32 mFrameStep{0u}; std::atomic mPadding{0u}; std::mutex mMutex; std::atomic mKillNow{true}; std::thread mThread; DEF_NEWDEL(WasapiPlayback) }; WasapiPlayback::~WasapiPlayback() { if(SUCCEEDED(mOpenStatus)) pushMessage(MsgType::CloseDevice).wait(); mOpenStatus = E_FAIL; if(mNotifyEvent != nullptr) CloseHandle(mNotifyEvent); mNotifyEvent = nullptr; } FORCE_ALIGN int WasapiPlayback::mixerProc() { HRESULT hr{CoInitializeEx(nullptr, COINIT_MULTITHREADED)}; if(FAILED(hr)) { ERR("CoInitializeEx(nullptr, COINIT_MULTITHREADED) failed: 0x%08lx\n", hr); mDevice->handleDisconnect("COM init failed: 0x%08lx", hr); return 1; } SetRTPriority(); althrd_setname(MIXER_THREAD_NAME); const uint update_size{mDevice->UpdateSize}; const UINT32 buffer_len{mDevice->BufferSize}; while(!mKillNow.load(std::memory_order_relaxed)) { UINT32 written; hr = mClient->GetCurrentPadding(&written); if(FAILED(hr)) { ERR("Failed to get padding: 0x%08lx\n", hr); mDevice->handleDisconnect("Failed to retrieve buffer padding: 0x%08lx", hr); break; } mPadding.store(written, std::memory_order_relaxed); uint len{buffer_len - written}; if(len < update_size) { DWORD res{WaitForSingleObjectEx(mNotifyEvent, 2000, FALSE)}; if(res != WAIT_OBJECT_0) ERR("WaitForSingleObjectEx error: 0x%lx\n", res); continue; } BYTE *buffer; hr = mRender->GetBuffer(len, &buffer); if(SUCCEEDED(hr)) { { std::lock_guard _{mMutex}; mDevice->renderSamples(buffer, len, mFrameStep); mPadding.store(written + len, std::memory_order_relaxed); } hr = mRender->ReleaseBuffer(len, 0); } if(FAILED(hr)) { ERR("Failed to buffer data: 0x%08lx\n", hr); mDevice->handleDisconnect("Failed to send playback samples: 0x%08lx", hr); break; } } mPadding.store(0u, std::memory_order_release); CoUninitialize(); return 0; } void WasapiPlayback::open(const char *name) { HRESULT hr{S_OK}; if(!mNotifyEvent) { mNotifyEvent = CreateEventW(nullptr, FALSE, FALSE, nullptr); if(mNotifyEvent == nullptr) { ERR("Failed to create notify events: %lu\n", GetLastError()); hr = E_FAIL; } } if(SUCCEEDED(hr)) { if(name) { if(PlaybackDevices.empty()) pushMessage(MsgType::EnumeratePlayback); if(std::strncmp(name, DevNameHead, DevNameHeadLen) == 0) { name += DevNameHeadLen; if(*name == '\0') name = nullptr; } } if(SUCCEEDED(mOpenStatus)) hr = pushMessage(MsgType::ReopenDevice, name).get(); else { hr = pushMessage(MsgType::OpenDevice, name).get(); mOpenStatus = hr; } } if(FAILED(hr)) throw al::backend_exception{al::backend_error::DeviceError, "Device init failed: 0x%08lx", hr}; } HRESULT WasapiPlayback::openProxy(const char *name) { const wchar_t *devid{nullptr}; if(name) { auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name || entry.endpoint_guid == name; }); if(iter == PlaybackDevices.cend()) { const std::wstring wname{utf8_to_wstr(name)}; iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [&wname](const DevMap &entry) -> bool { return entry.devid == wname; }); } if(iter == PlaybackDevices.cend()) { WARN("Failed to find device name matching \"%s\"\n", name); return E_FAIL; } name = iter->name.c_str(); devid = iter->devid.c_str(); } void *ptr; ComPtr mmdev; HRESULT hr{CoCreateInstance(CLSID_MMDeviceEnumerator, nullptr, CLSCTX_INPROC_SERVER, IID_IMMDeviceEnumerator, &ptr)}; if(SUCCEEDED(hr)) { ComPtr enumerator{static_cast(ptr)}; if(!devid) hr = enumerator->GetDefaultAudioEndpoint(eRender, eMultimedia, mmdev.getPtr()); else hr = enumerator->GetDevice(devid, mmdev.getPtr()); } if(FAILED(hr)) { WARN("Failed to open device \"%s\"\n", name?name:"(default)"); return hr; } mClient = nullptr; mMMDev = std::move(mmdev); if(name) mDevice->DeviceName = std::string{DevNameHead} + name; else mDevice->DeviceName = DevNameHead + get_device_name_and_guid(mMMDev.get()).first; return hr; } void WasapiPlayback::closeProxy() { mClient = nullptr; mMMDev = nullptr; } bool WasapiPlayback::reset() { HRESULT hr{pushMessage(MsgType::ResetDevice).get()}; if(FAILED(hr)) throw al::backend_exception{al::backend_error::DeviceError, "0x%08lx", hr}; return true; } HRESULT WasapiPlayback::resetProxy() { mClient = nullptr; void *ptr; HRESULT hr{mMMDev->Activate(IID_IAudioClient, CLSCTX_INPROC_SERVER, nullptr, &ptr)}; if(FAILED(hr)) { ERR("Failed to reactivate audio client: 0x%08lx\n", hr); return hr; } mClient = ComPtr{static_cast(ptr)}; WAVEFORMATEX *wfx; hr = mClient->GetMixFormat(&wfx); if(FAILED(hr)) { ERR("Failed to get mix format: 0x%08lx\n", hr); return hr; } TraceFormat("Device mix format", wfx); WAVEFORMATEXTENSIBLE OutputType; if(!MakeExtensible(&OutputType, wfx)) { CoTaskMemFree(wfx); return E_FAIL; } CoTaskMemFree(wfx); wfx = nullptr; const ReferenceTime per_time{ReferenceTime{seconds{mDevice->UpdateSize}} / mDevice->Frequency}; const ReferenceTime buf_time{ReferenceTime{seconds{mDevice->BufferSize}} / mDevice->Frequency}; bool isRear51{false}; if(!mDevice->Flags.test(FrequencyRequest)) mDevice->Frequency = OutputType.Format.nSamplesPerSec; if(!mDevice->Flags.test(ChannelsRequest)) { /* If not requesting a channel configuration, auto-select given what * fits the mask's lsb (to ensure no gaps in the output channels). If * there's no mask, we can only assume mono or stereo. */ const uint32_t chancount{OutputType.Format.nChannels}; const DWORD chanmask{OutputType.dwChannelMask}; if(chancount >= 8 && (chanmask&X71Mask) == X7DOT1) mDevice->FmtChans = DevFmtX71; else if(chancount >= 7 && (chanmask&X61Mask) == X6DOT1) mDevice->FmtChans = DevFmtX61; else if(chancount >= 6 && (chanmask&X51Mask) == X5DOT1) mDevice->FmtChans = DevFmtX51; else if(chancount >= 6 && (chanmask&X51RearMask) == X5DOT1REAR) { mDevice->FmtChans = DevFmtX51; isRear51 = true; } else if(chancount >= 4 && (chanmask&QuadMask) == QUAD) mDevice->FmtChans = DevFmtQuad; else if(chancount >= 2 && ((chanmask&StereoMask) == STEREO || !chanmask)) mDevice->FmtChans = DevFmtStereo; else if(chancount >= 1 && ((chanmask&MonoMask) == MONO || !chanmask)) mDevice->FmtChans = DevFmtMono; else ERR("Unhandled channel config: %d -- 0x%08lx\n", chancount, chanmask); } else { const uint32_t chancount{OutputType.Format.nChannels}; const DWORD chanmask{OutputType.dwChannelMask}; isRear51 = (chancount == 6 && (chanmask&X51RearMask) == X5DOT1REAR); } OutputType.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; switch(mDevice->FmtChans) { case DevFmtMono: OutputType.Format.nChannels = 1; OutputType.dwChannelMask = MONO; break; case DevFmtAmbi3D: mDevice->FmtChans = DevFmtStereo; /*fall-through*/ case DevFmtStereo: OutputType.Format.nChannels = 2; OutputType.dwChannelMask = STEREO; break; case DevFmtQuad: OutputType.Format.nChannels = 4; OutputType.dwChannelMask = QUAD; break; case DevFmtX51: OutputType.Format.nChannels = 6; OutputType.dwChannelMask = isRear51 ? X5DOT1REAR : X5DOT1; break; case DevFmtX61: OutputType.Format.nChannels = 7; OutputType.dwChannelMask = X6DOT1; break; case DevFmtX71: case DevFmtX3D71: OutputType.Format.nChannels = 8; OutputType.dwChannelMask = X7DOT1; break; } switch(mDevice->FmtType) { case DevFmtByte: mDevice->FmtType = DevFmtUByte; /* fall-through */ case DevFmtUByte: OutputType.Format.wBitsPerSample = 8; OutputType.Samples.wValidBitsPerSample = 8; OutputType.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; break; case DevFmtUShort: mDevice->FmtType = DevFmtShort; /* fall-through */ case DevFmtShort: OutputType.Format.wBitsPerSample = 16; OutputType.Samples.wValidBitsPerSample = 16; OutputType.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; break; case DevFmtUInt: mDevice->FmtType = DevFmtInt; /* fall-through */ case DevFmtInt: OutputType.Format.wBitsPerSample = 32; OutputType.Samples.wValidBitsPerSample = 32; OutputType.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; break; case DevFmtFloat: OutputType.Format.wBitsPerSample = 32; OutputType.Samples.wValidBitsPerSample = 32; OutputType.SubFormat = KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; break; } OutputType.Format.nSamplesPerSec = mDevice->Frequency; OutputType.Format.nBlockAlign = static_cast(OutputType.Format.nChannels * OutputType.Format.wBitsPerSample / 8); OutputType.Format.nAvgBytesPerSec = OutputType.Format.nSamplesPerSec * OutputType.Format.nBlockAlign; TraceFormat("Requesting playback format", &OutputType.Format); hr = mClient->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED, &OutputType.Format, &wfx); if(FAILED(hr)) { ERR("Failed to check format support: 0x%08lx\n", hr); hr = mClient->GetMixFormat(&wfx); } if(FAILED(hr)) { ERR("Failed to find a supported format: 0x%08lx\n", hr); return hr; } if(wfx != nullptr) { TraceFormat("Got playback format", wfx); if(!MakeExtensible(&OutputType, wfx)) { CoTaskMemFree(wfx); return E_FAIL; } CoTaskMemFree(wfx); wfx = nullptr; mDevice->Frequency = OutputType.Format.nSamplesPerSec; const uint32_t chancount{OutputType.Format.nChannels}; const DWORD chanmask{OutputType.dwChannelMask}; /* Don't update the channel format if the requested format fits what's * supported. */ bool chansok{false}; if(mDevice->Flags.test(ChannelsRequest)) { /* When requesting a channel configuration, make sure it fits the * mask's lsb (to ensure no gaps in the output channels). If * there's no mask, assume the request fits with enough channels. */ switch(mDevice->FmtChans) { case DevFmtMono: chansok = (chancount >= 1 && ((chanmask&MonoMask) == MONO || !chanmask)); break; case DevFmtStereo: chansok = (chancount >= 2 && ((chanmask&StereoMask) == STEREO || !chanmask)); break; case DevFmtQuad: chansok = (chancount >= 4 && ((chanmask&QuadMask) == QUAD || !chanmask)); break; case DevFmtX51: chansok = (chancount >= 6 && ((chanmask&X51Mask) == X5DOT1 || (chanmask&X51RearMask) == X5DOT1REAR || !chanmask)); break; case DevFmtX61: chansok = (chancount >= 7 && ((chanmask&X61Mask) == X6DOT1 || !chanmask)); break; case DevFmtX71: case DevFmtX3D71: chansok = (chancount >= 8 && ((chanmask&X71Mask) == X7DOT1 || !chanmask)); break; case DevFmtAmbi3D: break; } } if(!chansok) { if(chancount >= 8 && (chanmask&X71Mask) == X7DOT1) mDevice->FmtChans = DevFmtX71; else if(chancount >= 7 && (chanmask&X61Mask) == X6DOT1) mDevice->FmtChans = DevFmtX61; else if(chancount >= 6 && ((chanmask&X51Mask) == X5DOT1 || (chanmask&X51RearMask) == X5DOT1REAR)) mDevice->FmtChans = DevFmtX51; else if(chancount >= 4 && (chanmask&QuadMask) == QUAD) mDevice->FmtChans = DevFmtQuad; else if(chancount >= 2 && ((chanmask&StereoMask) == STEREO || !chanmask)) mDevice->FmtChans = DevFmtStereo; else if(chancount >= 1 && ((chanmask&MonoMask) == MONO || !chanmask)) mDevice->FmtChans = DevFmtMono; else { ERR("Unhandled extensible channels: %d -- 0x%08lx\n", OutputType.Format.nChannels, OutputType.dwChannelMask); mDevice->FmtChans = DevFmtStereo; OutputType.Format.nChannels = 2; OutputType.dwChannelMask = STEREO; } } if(IsEqualGUID(OutputType.SubFormat, KSDATAFORMAT_SUBTYPE_PCM)) { if(OutputType.Format.wBitsPerSample == 8) mDevice->FmtType = DevFmtUByte; else if(OutputType.Format.wBitsPerSample == 16) mDevice->FmtType = DevFmtShort; else if(OutputType.Format.wBitsPerSample == 32) mDevice->FmtType = DevFmtInt; else { mDevice->FmtType = DevFmtShort; OutputType.Format.wBitsPerSample = 16; } } else if(IsEqualGUID(OutputType.SubFormat, KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)) { mDevice->FmtType = DevFmtFloat; OutputType.Format.wBitsPerSample = 32; } else { ERR("Unhandled format sub-type: %s\n", GuidPrinter{OutputType.SubFormat}.c_str()); mDevice->FmtType = DevFmtShort; if(OutputType.Format.wFormatTag != WAVE_FORMAT_EXTENSIBLE) OutputType.Format.wFormatTag = WAVE_FORMAT_PCM; OutputType.Format.wBitsPerSample = 16; OutputType.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; } OutputType.Samples.wValidBitsPerSample = OutputType.Format.wBitsPerSample; } mFrameStep = OutputType.Format.nChannels; const EndpointFormFactor formfactor{get_device_formfactor(mMMDev.get())}; mDevice->Flags.set(DirectEar, (formfactor == Headphones || formfactor == Headset)); setDefaultWFXChannelOrder(); hr = mClient->Initialize(AUDCLNT_SHAREMODE_SHARED, AUDCLNT_STREAMFLAGS_EVENTCALLBACK, buf_time.count(), 0, &OutputType.Format, nullptr); if(FAILED(hr)) { ERR("Failed to initialize audio client: 0x%08lx\n", hr); return hr; } UINT32 buffer_len{}; ReferenceTime min_per{}; hr = mClient->GetDevicePeriod(&reinterpret_cast(min_per), nullptr); if(SUCCEEDED(hr)) hr = mClient->GetBufferSize(&buffer_len); if(FAILED(hr)) { ERR("Failed to get audio buffer info: 0x%08lx\n", hr); return hr; } /* Find the nearest multiple of the period size to the update size */ if(min_per < per_time) min_per *= maxi64((per_time + min_per/2) / min_per, 1); mDevice->UpdateSize = minu(RefTime2Samples(min_per, mDevice->Frequency), buffer_len/2); mDevice->BufferSize = buffer_len; hr = mClient->SetEventHandle(mNotifyEvent); if(FAILED(hr)) { ERR("Failed to set event handle: 0x%08lx\n", hr); return hr; } return hr; } void WasapiPlayback::start() { const HRESULT hr{pushMessage(MsgType::StartDevice).get()}; if(FAILED(hr)) throw al::backend_exception{al::backend_error::DeviceError, "Failed to start playback: 0x%lx", hr}; } HRESULT WasapiPlayback::startProxy() { ResetEvent(mNotifyEvent); HRESULT hr{mClient->Start()}; if(FAILED(hr)) { ERR("Failed to start audio client: 0x%08lx\n", hr); return hr; } void *ptr; hr = mClient->GetService(IID_IAudioRenderClient, &ptr); if(SUCCEEDED(hr)) { mRender = ComPtr{static_cast(ptr)}; try { mKillNow.store(false, std::memory_order_release); mThread = std::thread{std::mem_fn(&WasapiPlayback::mixerProc), this}; } catch(...) { mRender = nullptr; ERR("Failed to start thread\n"); hr = E_FAIL; } } if(FAILED(hr)) mClient->Stop(); return hr; } void WasapiPlayback::stop() { pushMessage(MsgType::StopDevice).wait(); } void WasapiPlayback::stopProxy() { if(!mRender || !mThread.joinable()) return; mKillNow.store(true, std::memory_order_release); mThread.join(); mRender = nullptr; mClient->Stop(); } ClockLatency WasapiPlayback::getClockLatency() { ClockLatency ret; std::lock_guard _{mMutex}; ret.ClockTime = GetDeviceClockTime(mDevice); ret.Latency = std::chrono::seconds{mPadding.load(std::memory_order_relaxed)}; ret.Latency /= mDevice->Frequency; return ret; } struct WasapiCapture final : public BackendBase, WasapiProxy { WasapiCapture(DeviceBase *device) noexcept : BackendBase{device} { } ~WasapiCapture() override; int recordProc(); void open(const char *name) override; HRESULT openProxy(const char *name) override; void closeProxy() override; HRESULT resetProxy() override; void start() override; HRESULT startProxy() override; void stop() override; void stopProxy() override; void captureSamples(al::byte *buffer, uint samples) override; uint availableSamples() override; HRESULT mOpenStatus{E_FAIL}; ComPtr mMMDev{nullptr}; ComPtr mClient{nullptr}; ComPtr mCapture{nullptr}; HANDLE mNotifyEvent{nullptr}; ChannelConverter mChannelConv{}; SampleConverterPtr mSampleConv; RingBufferPtr mRing; std::atomic mKillNow{true}; std::thread mThread; DEF_NEWDEL(WasapiCapture) }; WasapiCapture::~WasapiCapture() { if(SUCCEEDED(mOpenStatus)) pushMessage(MsgType::CloseDevice).wait(); mOpenStatus = E_FAIL; if(mNotifyEvent != nullptr) CloseHandle(mNotifyEvent); mNotifyEvent = nullptr; } FORCE_ALIGN int WasapiCapture::recordProc() { HRESULT hr{CoInitializeEx(nullptr, COINIT_MULTITHREADED)}; if(FAILED(hr)) { ERR("CoInitializeEx(nullptr, COINIT_MULTITHREADED) failed: 0x%08lx\n", hr); mDevice->handleDisconnect("COM init failed: 0x%08lx", hr); return 1; } althrd_setname(RECORD_THREAD_NAME); al::vector samples; while(!mKillNow.load(std::memory_order_relaxed)) { UINT32 avail; hr = mCapture->GetNextPacketSize(&avail); if(FAILED(hr)) ERR("Failed to get next packet size: 0x%08lx\n", hr); else if(avail > 0) { UINT32 numsamples; DWORD flags; BYTE *rdata; hr = mCapture->GetBuffer(&rdata, &numsamples, &flags, nullptr, nullptr); if(FAILED(hr)) ERR("Failed to get capture buffer: 0x%08lx\n", hr); else { if(mChannelConv.is_active()) { samples.resize(numsamples*2); mChannelConv.convert(rdata, samples.data(), numsamples); rdata = reinterpret_cast(samples.data()); } auto data = mRing->getWriteVector(); size_t dstframes; if(mSampleConv) { const void *srcdata{rdata}; uint srcframes{numsamples}; dstframes = mSampleConv->convert(&srcdata, &srcframes, data.first.buf, static_cast(minz(data.first.len, INT_MAX))); if(srcframes > 0 && dstframes == data.first.len && data.second.len > 0) { /* If some source samples remain, all of the first dest * block was filled, and there's space in the second * dest block, do another run for the second block. */ dstframes += mSampleConv->convert(&srcdata, &srcframes, data.second.buf, static_cast(minz(data.second.len, INT_MAX))); } } else { const uint framesize{mDevice->frameSizeFromFmt()}; size_t len1{minz(data.first.len, numsamples)}; size_t len2{minz(data.second.len, numsamples-len1)}; memcpy(data.first.buf, rdata, len1*framesize); if(len2 > 0) memcpy(data.second.buf, rdata+len1*framesize, len2*framesize); dstframes = len1 + len2; } mRing->writeAdvance(dstframes); hr = mCapture->ReleaseBuffer(numsamples); if(FAILED(hr)) ERR("Failed to release capture buffer: 0x%08lx\n", hr); } } if(FAILED(hr)) { mDevice->handleDisconnect("Failed to capture samples: 0x%08lx", hr); break; } DWORD res{WaitForSingleObjectEx(mNotifyEvent, 2000, FALSE)}; if(res != WAIT_OBJECT_0) ERR("WaitForSingleObjectEx error: 0x%lx\n", res); } CoUninitialize(); return 0; } void WasapiCapture::open(const char *name) { HRESULT hr{S_OK}; mNotifyEvent = CreateEventW(nullptr, FALSE, FALSE, nullptr); if(mNotifyEvent == nullptr) { ERR("Failed to create notify event: %lu\n", GetLastError()); hr = E_FAIL; } if(SUCCEEDED(hr)) { if(name) { if(CaptureDevices.empty()) pushMessage(MsgType::EnumerateCapture); if(std::strncmp(name, DevNameHead, DevNameHeadLen) == 0) { name += DevNameHeadLen; if(*name == '\0') name = nullptr; } } hr = pushMessage(MsgType::OpenDevice, name).get(); } mOpenStatus = hr; if(FAILED(hr)) throw al::backend_exception{al::backend_error::DeviceError, "Device init failed: 0x%08lx", hr}; hr = pushMessage(MsgType::ResetDevice).get(); if(FAILED(hr)) { if(hr == E_OUTOFMEMORY) throw al::backend_exception{al::backend_error::OutOfMemory, "Out of memory"}; throw al::backend_exception{al::backend_error::DeviceError, "Device reset failed"}; } } HRESULT WasapiCapture::openProxy(const char *name) { const wchar_t *devid{nullptr}; if(name) { auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name || entry.endpoint_guid == name; }); if(iter == CaptureDevices.cend()) { const std::wstring wname{utf8_to_wstr(name)}; iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [&wname](const DevMap &entry) -> bool { return entry.devid == wname; }); } if(iter == CaptureDevices.cend()) { WARN("Failed to find device name matching \"%s\"\n", name); return E_FAIL; } name = iter->name.c_str(); devid = iter->devid.c_str(); } void *ptr; HRESULT hr{CoCreateInstance(CLSID_MMDeviceEnumerator, nullptr, CLSCTX_INPROC_SERVER, IID_IMMDeviceEnumerator, &ptr)}; if(SUCCEEDED(hr)) { ComPtr enumerator{static_cast(ptr)}; if(!devid) hr = enumerator->GetDefaultAudioEndpoint(eCapture, eMultimedia, mMMDev.getPtr()); else hr = enumerator->GetDevice(devid, mMMDev.getPtr()); } if(FAILED(hr)) { WARN("Failed to open device \"%s\"\n", name?name:"(default)"); return hr; } mClient = nullptr; if(name) mDevice->DeviceName = std::string{DevNameHead} + name; else mDevice->DeviceName = DevNameHead + get_device_name_and_guid(mMMDev.get()).first; return hr; } void WasapiCapture::closeProxy() { mClient = nullptr; mMMDev = nullptr; } HRESULT WasapiCapture::resetProxy() { mClient = nullptr; void *ptr; HRESULT hr{mMMDev->Activate(IID_IAudioClient, CLSCTX_INPROC_SERVER, nullptr, &ptr)}; if(FAILED(hr)) { ERR("Failed to reactivate audio client: 0x%08lx\n", hr); return hr; } mClient = ComPtr{static_cast(ptr)}; WAVEFORMATEX *wfx; hr = mClient->GetMixFormat(&wfx); if(FAILED(hr)) { ERR("Failed to get capture format: 0x%08lx\n", hr); return hr; } TraceFormat("Device capture format", wfx); WAVEFORMATEXTENSIBLE InputType{}; if(!MakeExtensible(&InputType, wfx)) { CoTaskMemFree(wfx); return E_FAIL; } CoTaskMemFree(wfx); wfx = nullptr; const bool isRear51{InputType.Format.nChannels == 6 && (InputType.dwChannelMask&X51RearMask) == X5DOT1REAR}; // Make sure buffer is at least 100ms in size ReferenceTime buf_time{ReferenceTime{seconds{mDevice->BufferSize}} / mDevice->Frequency}; buf_time = std::max(buf_time, ReferenceTime{milliseconds{100}}); InputType = {}; InputType.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; switch(mDevice->FmtChans) { case DevFmtMono: InputType.Format.nChannels = 1; InputType.dwChannelMask = MONO; break; case DevFmtStereo: InputType.Format.nChannels = 2; InputType.dwChannelMask = STEREO; break; case DevFmtQuad: InputType.Format.nChannels = 4; InputType.dwChannelMask = QUAD; break; case DevFmtX51: InputType.Format.nChannels = 6; InputType.dwChannelMask = isRear51 ? X5DOT1REAR : X5DOT1; break; case DevFmtX61: InputType.Format.nChannels = 7; InputType.dwChannelMask = X6DOT1; break; case DevFmtX71: InputType.Format.nChannels = 8; InputType.dwChannelMask = X7DOT1; break; case DevFmtX3D71: case DevFmtAmbi3D: return E_FAIL; } switch(mDevice->FmtType) { /* NOTE: Signedness doesn't matter, the converter will handle it. */ case DevFmtByte: case DevFmtUByte: InputType.Format.wBitsPerSample = 8; InputType.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; break; case DevFmtShort: case DevFmtUShort: InputType.Format.wBitsPerSample = 16; InputType.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; break; case DevFmtInt: case DevFmtUInt: InputType.Format.wBitsPerSample = 32; InputType.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; break; case DevFmtFloat: InputType.Format.wBitsPerSample = 32; InputType.SubFormat = KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; break; } InputType.Samples.wValidBitsPerSample = InputType.Format.wBitsPerSample; InputType.Format.nSamplesPerSec = mDevice->Frequency; InputType.Format.nBlockAlign = static_cast(InputType.Format.nChannels * InputType.Format.wBitsPerSample / 8); InputType.Format.nAvgBytesPerSec = InputType.Format.nSamplesPerSec * InputType.Format.nBlockAlign; InputType.Format.cbSize = sizeof(InputType) - sizeof(InputType.Format); TraceFormat("Requesting capture format", &InputType.Format); hr = mClient->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED, &InputType.Format, &wfx); if(FAILED(hr)) { WARN("Failed to check format support: 0x%08lx\n", hr); hr = mClient->GetMixFormat(&wfx); } if(FAILED(hr)) { ERR("Failed to check format support: 0x%08lx\n", hr); return hr; } mSampleConv = nullptr; mChannelConv = {}; if(wfx != nullptr) { TraceFormat("Got capture format", wfx); if(!MakeExtensible(&InputType, wfx)) { CoTaskMemFree(wfx); return E_FAIL; } CoTaskMemFree(wfx); wfx = nullptr; auto validate_fmt = [](DeviceBase *device, uint32_t chancount, DWORD chanmask) noexcept -> bool { switch(device->FmtChans) { /* If the device wants mono, we can handle any input. */ case DevFmtMono: return true; /* If the device wants stereo, we can handle mono or stereo input. */ case DevFmtStereo: return (chancount == 2 && (chanmask == 0 || (chanmask&StereoMask) == STEREO)) || (chancount == 1 && (chanmask&MonoMask) == MONO); /* Otherwise, the device must match the input type. */ case DevFmtQuad: return (chancount == 4 && (chanmask == 0 || (chanmask&QuadMask) == QUAD)); /* 5.1 (Side) and 5.1 (Rear) are interchangeable here. */ case DevFmtX51: return (chancount == 6 && (chanmask == 0 || (chanmask&X51Mask) == X5DOT1 || (chanmask&X51RearMask) == X5DOT1REAR)); case DevFmtX61: return (chancount == 7 && (chanmask == 0 || (chanmask&X61Mask) == X6DOT1)); case DevFmtX71: case DevFmtX3D71: return (chancount == 8 && (chanmask == 0 || (chanmask&X71Mask) == X7DOT1)); case DevFmtAmbi3D: return (chanmask == 0 && chancount == device->channelsFromFmt()); } return false; }; if(!validate_fmt(mDevice, InputType.Format.nChannels, InputType.dwChannelMask)) { ERR("Failed to match format, wanted: %s %s %uhz, got: 0x%08lx mask %d channel%s %d-bit %luhz\n", DevFmtChannelsString(mDevice->FmtChans), DevFmtTypeString(mDevice->FmtType), mDevice->Frequency, InputType.dwChannelMask, InputType.Format.nChannels, (InputType.Format.nChannels==1)?"":"s", InputType.Format.wBitsPerSample, InputType.Format.nSamplesPerSec); return E_FAIL; } } DevFmtType srcType{}; if(IsEqualGUID(InputType.SubFormat, KSDATAFORMAT_SUBTYPE_PCM)) { if(InputType.Format.wBitsPerSample == 8) srcType = DevFmtUByte; else if(InputType.Format.wBitsPerSample == 16) srcType = DevFmtShort; else if(InputType.Format.wBitsPerSample == 32) srcType = DevFmtInt; else { ERR("Unhandled integer bit depth: %d\n", InputType.Format.wBitsPerSample); return E_FAIL; } } else if(IsEqualGUID(InputType.SubFormat, KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)) { if(InputType.Format.wBitsPerSample == 32) srcType = DevFmtFloat; else { ERR("Unhandled float bit depth: %d\n", InputType.Format.wBitsPerSample); return E_FAIL; } } else { ERR("Unhandled format sub-type: %s\n", GuidPrinter{InputType.SubFormat}.c_str()); return E_FAIL; } if(mDevice->FmtChans == DevFmtMono && InputType.Format.nChannels != 1) { uint chanmask{(1u<FmtChans}; TRACE("Created %s multichannel-to-mono converter\n", DevFmtTypeString(srcType)); /* The channel converter always outputs float, so change the input type * for the resampler/type-converter. */ srcType = DevFmtFloat; } else if(mDevice->FmtChans == DevFmtStereo && InputType.Format.nChannels == 1) { mChannelConv = ChannelConverter{srcType, 1, 0x1, mDevice->FmtChans}; TRACE("Created %s mono-to-stereo converter\n", DevFmtTypeString(srcType)); srcType = DevFmtFloat; } if(mDevice->Frequency != InputType.Format.nSamplesPerSec || mDevice->FmtType != srcType) { mSampleConv = CreateSampleConverter(srcType, mDevice->FmtType, mDevice->channelsFromFmt(), InputType.Format.nSamplesPerSec, mDevice->Frequency, Resampler::FastBSinc24); if(!mSampleConv) { ERR("Failed to create converter for %s format, dst: %s %uhz, src: %s %luhz\n", DevFmtChannelsString(mDevice->FmtChans), DevFmtTypeString(mDevice->FmtType), mDevice->Frequency, DevFmtTypeString(srcType), InputType.Format.nSamplesPerSec); return E_FAIL; } TRACE("Created converter for %s format, dst: %s %uhz, src: %s %luhz\n", DevFmtChannelsString(mDevice->FmtChans), DevFmtTypeString(mDevice->FmtType), mDevice->Frequency, DevFmtTypeString(srcType), InputType.Format.nSamplesPerSec); } hr = mClient->Initialize(AUDCLNT_SHAREMODE_SHARED, AUDCLNT_STREAMFLAGS_EVENTCALLBACK, buf_time.count(), 0, &InputType.Format, nullptr); if(FAILED(hr)) { ERR("Failed to initialize audio client: 0x%08lx\n", hr); return hr; } UINT32 buffer_len{}; ReferenceTime min_per{}; hr = mClient->GetDevicePeriod(&reinterpret_cast(min_per), nullptr); if(SUCCEEDED(hr)) hr = mClient->GetBufferSize(&buffer_len); if(FAILED(hr)) { ERR("Failed to get buffer size: 0x%08lx\n", hr); return hr; } mDevice->UpdateSize = RefTime2Samples(min_per, mDevice->Frequency); mDevice->BufferSize = buffer_len; mRing = RingBuffer::Create(buffer_len, mDevice->frameSizeFromFmt(), false); hr = mClient->SetEventHandle(mNotifyEvent); if(FAILED(hr)) { ERR("Failed to set event handle: 0x%08lx\n", hr); return hr; } return hr; } void WasapiCapture::start() { const HRESULT hr{pushMessage(MsgType::StartDevice).get()}; if(FAILED(hr)) throw al::backend_exception{al::backend_error::DeviceError, "Failed to start recording: 0x%lx", hr}; } HRESULT WasapiCapture::startProxy() { ResetEvent(mNotifyEvent); HRESULT hr{mClient->Start()}; if(FAILED(hr)) { ERR("Failed to start audio client: 0x%08lx\n", hr); return hr; } void *ptr; hr = mClient->GetService(IID_IAudioCaptureClient, &ptr); if(SUCCEEDED(hr)) { mCapture = ComPtr{static_cast(ptr)}; try { mKillNow.store(false, std::memory_order_release); mThread = std::thread{std::mem_fn(&WasapiCapture::recordProc), this}; } catch(...) { mCapture = nullptr; ERR("Failed to start thread\n"); hr = E_FAIL; } } if(FAILED(hr)) { mClient->Stop(); mClient->Reset(); } return hr; } void WasapiCapture::stop() { pushMessage(MsgType::StopDevice).wait(); } void WasapiCapture::stopProxy() { if(!mCapture || !mThread.joinable()) return; mKillNow.store(true, std::memory_order_release); mThread.join(); mCapture = nullptr; mClient->Stop(); mClient->Reset(); } void WasapiCapture::captureSamples(al::byte *buffer, uint samples) { mRing->read(buffer, samples); } uint WasapiCapture::availableSamples() { return static_cast(mRing->readSpace()); } } // namespace bool WasapiBackendFactory::init() { static HRESULT InitResult{E_FAIL}; if(FAILED(InitResult)) try { std::promise promise; auto future = promise.get_future(); std::thread{&WasapiProxy::messageHandler, &promise}.detach(); InitResult = future.get(); } catch(...) { } return SUCCEEDED(InitResult); } bool WasapiBackendFactory::querySupport(BackendType type) { return type == BackendType::Playback || type == BackendType::Capture; } std::string WasapiBackendFactory::probe(BackendType type) { std::string outnames; switch(type) { case BackendType::Playback: WasapiProxy::pushMessageStatic(MsgType::EnumeratePlayback).wait(); for(const DevMap &entry : PlaybackDevices) { /* +1 to also append the null char (to ensure a null-separated list * and double-null terminated list). */ outnames.append(DevNameHead).append(entry.name.c_str(), entry.name.length()+1); } break; case BackendType::Capture: WasapiProxy::pushMessageStatic(MsgType::EnumerateCapture).wait(); for(const DevMap &entry : CaptureDevices) outnames.append(DevNameHead).append(entry.name.c_str(), entry.name.length()+1); break; } return outnames; } BackendPtr WasapiBackendFactory::createBackend(DeviceBase *device, BackendType type) { if(type == BackendType::Playback) return BackendPtr{new WasapiPlayback{device}}; if(type == BackendType::Capture) return BackendPtr{new WasapiCapture{device}}; return nullptr; } BackendFactory &WasapiBackendFactory::getFactory() { static WasapiBackendFactory factory{}; return factory; }