|
|
- /*
- * 2-channel UHJ Decoder
- *
- * Copyright (c) Chris Robinson <chris.kcat@gmail.com>
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- #include "config.h"
-
- #include <array>
- #include <complex>
- #include <cstring>
- #include <memory>
- #include <stddef.h>
- #include <string>
- #include <utility>
- #include <vector>
-
- #include "albit.h"
- #include "albyte.h"
- #include "alcomplex.h"
- #include "almalloc.h"
- #include "alnumbers.h"
- #include "alspan.h"
- #include "vector.h"
- #include "opthelpers.h"
- #include "phase_shifter.h"
-
- #include "sndfile.h"
-
- #include "win_main_utf8.h"
-
-
- struct FileDeleter {
- void operator()(FILE *file) { fclose(file); }
- };
- using FilePtr = std::unique_ptr<FILE,FileDeleter>;
-
- struct SndFileDeleter {
- void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
- };
- using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;
-
-
- using ubyte = unsigned char;
- using ushort = unsigned short;
- using uint = unsigned int;
- using complex_d = std::complex<double>;
-
- using byte4 = std::array<al::byte,4>;
-
-
- constexpr ubyte SUBTYPE_BFORMAT_FLOAT[]{
- 0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
- 0xca, 0x00, 0x00, 0x00
- };
-
- void fwrite16le(ushort val, FILE *f)
- {
- ubyte data[2]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff) };
- fwrite(data, 1, 2, f);
- }
-
- void fwrite32le(uint val, FILE *f)
- {
- ubyte data[4]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
- static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff) };
- fwrite(data, 1, 4, f);
- }
-
- template<al::endian = al::endian::native>
- byte4 f32AsLEBytes(const float &value) = delete;
-
- template<>
- byte4 f32AsLEBytes<al::endian::little>(const float &value)
- {
- byte4 ret{};
- std::memcpy(ret.data(), &value, 4);
- return ret;
- }
- template<>
- byte4 f32AsLEBytes<al::endian::big>(const float &value)
- {
- byte4 ret{};
- std::memcpy(ret.data(), &value, 4);
- std::swap(ret[0], ret[3]);
- std::swap(ret[1], ret[2]);
- return ret;
- }
-
-
- constexpr uint BufferLineSize{1024};
-
- using FloatBufferLine = std::array<float,BufferLineSize>;
- using FloatBufferSpan = al::span<float,BufferLineSize>;
-
-
- struct UhjDecoder {
- constexpr static size_t sFilterDelay{1024};
-
- alignas(16) std::array<float,BufferLineSize+sFilterDelay> mS{};
- alignas(16) std::array<float,BufferLineSize+sFilterDelay> mD{};
- alignas(16) std::array<float,BufferLineSize+sFilterDelay> mT{};
- alignas(16) std::array<float,BufferLineSize+sFilterDelay> mQ{};
-
- /* History for the FIR filter. */
- alignas(16) std::array<float,sFilterDelay-1> mDTHistory{};
- alignas(16) std::array<float,sFilterDelay-1> mSHistory{};
-
- alignas(16) std::array<float,BufferLineSize + sFilterDelay*2> mTemp{};
-
- void decode(const float *RESTRICT InSamples, const size_t InChannels,
- const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo);
- void decode2(const float *RESTRICT InSamples, const al::span<FloatBufferLine,3> OutSamples,
- const size_t SamplesToDo);
-
- DEF_NEWDEL(UhjDecoder)
- };
-
- const PhaseShifterT<UhjDecoder::sFilterDelay*2> PShift{};
-
-
- /* Decoding UHJ is done as:
- *
- * S = Left + Right
- * D = Left - Right
- *
- * W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
- * X = 0.418496*S - j(0.828331*D + 0.767820*T)
- * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
- * Z = 1.023332*Q
- *
- * where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
- * channel excludes Q and T. The B-Format signal reconstructed from 2-channel
- * UHJ should not be run through a normal B-Format decoder, as it needs
- * different shelf filters.
- *
- * NOTE: Some sources specify
- *
- * S = (Left + Right)/2
- * D = (Left - Right)/2
- *
- * However, this is incorrect. It's halving Left and Right even though they
- * were already halved during encoding, causing S and D to be half what they
- * initially were at the encoding stage. This division is not present in
- * Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
- * signals. As proof, taking Y for example:
- *
- * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
- *
- * * Plug in the encoding parameters, using ? as a placeholder for whether S
- * and D should receive an extra 0.5 factor
- * Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
- * 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
- * 0.186633*j(0.9396926*W + 0.1855740*X)*?
- *
- * * Move common factors in
- * Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
- * (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
- * j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
- *
- * * Clean up extraneous groupings
- * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
- * j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
- * j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
- *
- * * Move phase shifts together and combine them
- * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
- * 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
- * 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
- *
- * * Reorder terms
- * Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
- * 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
- * 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
- *
- * * Move common factors out
- * Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
- * ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
- * (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
- *
- * * Result w/ 0.5 factor:
- * -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
- * 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
- * 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
- * -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
- *
- * * Result w/o 0.5 factor:
- * -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
- * 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
- * 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
- * -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
- *
- * Not halving produces a result matching the original input.
- */
- void UhjDecoder::decode(const float *RESTRICT InSamples, const size_t InChannels,
- const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo)
- {
- ASSUME(SamplesToDo > 0);
-
- float *woutput{OutSamples[0].data()};
- float *xoutput{OutSamples[1].data()};
- float *youtput{OutSamples[2].data()};
-
- /* Add a delay to the input channels, to align it with the all-passed
- * signal.
- */
-
- /* S = Left + Right */
- for(size_t i{0};i < SamplesToDo;++i)
- mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];
-
- /* D = Left - Right */
- for(size_t i{0};i < SamplesToDo;++i)
- mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];
-
- if(InChannels > 2)
- {
- /* T */
- for(size_t i{0};i < SamplesToDo;++i)
- mT[sFilterDelay+i] = InSamples[i*InChannels + 2];
- }
- if(InChannels > 3)
- {
- /* Q */
- for(size_t i{0};i < SamplesToDo;++i)
- mQ[sFilterDelay+i] = InSamples[i*InChannels + 3];
- }
-
- /* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
- auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
- std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter,
- [](const float d, const float t) noexcept { return 0.828331f*d + 0.767820f*t; });
- std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
- PShift.process({xoutput, SamplesToDo}, mTemp.data());
-
- for(size_t i{0};i < SamplesToDo;++i)
- {
- /* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
- woutput[i] = 0.981532f*mS[i] + 0.197484f*xoutput[i];
- /* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
- xoutput[i] = 0.418496f*mS[i] - xoutput[i];
- }
-
- /* Precompute j*S and store in youtput. */
- tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
- std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
- std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
- PShift.process({youtput, SamplesToDo}, mTemp.data());
-
- for(size_t i{0};i < SamplesToDo;++i)
- {
- /* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
- youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i];
- }
-
- if(OutSamples.size() > 3)
- {
- float *zoutput{OutSamples[3].data()};
- /* Z = 1.023332*Q */
- for(size_t i{0};i < SamplesToDo;++i)
- zoutput[i] = 1.023332f*mQ[i];
- }
-
- std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
- std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
- std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin());
- std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin());
- }
-
- /* This is an alternative equation for decoding 2-channel UHJ. Not sure what
- * the intended benefit is over the above equation as this slightly reduces the
- * amount of the original left response and has more of the phase-shifted
- * forward response on the left response.
- *
- * This decoding is done as:
- *
- * S = Left + Right
- * D = Left - Right
- *
- * W = 0.981530*S + j*0.163585*D
- * X = 0.418504*S - j*0.828347*D
- * Y = 0.762956*D + j*0.384230*S
- *
- * where j is a +90 degree phase shift.
- *
- * NOTE: As above, S and D should not be halved. The only consequence of
- * halving here is merely a -6dB reduction in output, but it's still incorrect.
- */
- void UhjDecoder::decode2(const float *RESTRICT InSamples,
- const al::span<FloatBufferLine,3> OutSamples, const size_t SamplesToDo)
- {
- ASSUME(SamplesToDo > 0);
-
- float *woutput{OutSamples[0].data()};
- float *xoutput{OutSamples[1].data()};
- float *youtput{OutSamples[2].data()};
-
- /* S = Left + Right */
- for(size_t i{0};i < SamplesToDo;++i)
- mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];
-
- /* D = Left - Right */
- for(size_t i{0};i < SamplesToDo;++i)
- mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];
-
- /* Precompute j*D and store in xoutput. */
- auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
- std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
- std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
- PShift.process({xoutput, SamplesToDo}, mTemp.data());
-
- for(size_t i{0};i < SamplesToDo;++i)
- {
- /* W = 0.981530*S + j*0.163585*D */
- woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i];
- /* X = 0.418504*S - j*0.828347*D */
- xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i];
- }
-
- /* Precompute j*S and store in youtput. */
- tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
- std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
- std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
- PShift.process({youtput, SamplesToDo}, mTemp.data());
-
- for(size_t i{0};i < SamplesToDo;++i)
- {
- /* Y = 0.762956*D + j*0.384230*S */
- youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i];
- }
-
- std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
- std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
- }
-
-
- int main(int argc, char **argv)
- {
- if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0)
- {
- printf("Usage: %s <[options] filename.wav...>\n\n"
- " Options:\n"
- " --general Use the general equations for 2-channel UHJ (default).\n"
- " --alternative Use the alternative equations for 2-channel UHJ.\n"
- "\n"
- "Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
- "the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
- "reconstruct the original B-Format signal.",
- argv[0]);
- return 1;
- }
-
- size_t num_files{0}, num_decoded{0};
- bool use_general{true};
- for(int fidx{1};fidx < argc;++fidx)
- {
- if(std::strcmp(argv[fidx], "--general") == 0)
- {
- use_general = true;
- continue;
- }
- if(std::strcmp(argv[fidx], "--alternative") == 0)
- {
- use_general = false;
- continue;
- }
- ++num_files;
- SF_INFO ininfo{};
- SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)};
- if(!infile)
- {
- fprintf(stderr, "Failed to open %s\n", argv[fidx]);
- continue;
- }
- if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
- {
- fprintf(stderr, "%s is already B-Format\n", argv[fidx]);
- continue;
- }
- uint outchans{};
- if(ininfo.channels == 2)
- outchans = 3;
- else if(ininfo.channels == 3 || ininfo.channels == 4)
- outchans = static_cast<uint>(ininfo.channels);
- else
- {
- fprintf(stderr, "%s is not a 2-, 3-, or 4-channel file\n", argv[fidx]);
- continue;
- }
- printf("Converting %s from %d-channel UHJ%s...\n", argv[fidx], ininfo.channels,
- (ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : "");
-
- std::string outname{argv[fidx]};
- auto lastslash = outname.find_last_of('/');
- if(lastslash != std::string::npos)
- outname.erase(0, lastslash+1);
- auto lastdot = outname.find_last_of('.');
- if(lastdot != std::string::npos)
- outname.resize(lastdot+1);
- outname += "amb";
-
- FilePtr outfile{fopen(outname.c_str(), "wb")};
- if(!outfile)
- {
- fprintf(stderr, "Failed to create %s\n", outname.c_str());
- continue;
- }
-
- fputs("RIFF", outfile.get());
- fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close
-
- fputs("WAVE", outfile.get());
-
- fputs("fmt ", outfile.get());
- fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE
-
- // 16-bit val, format type id (extensible: 0xFFFE)
- fwrite16le(0xFFFE, outfile.get());
- // 16-bit val, channel count
- fwrite16le(static_cast<ushort>(outchans), outfile.get());
- // 32-bit val, frequency
- fwrite32le(static_cast<uint>(ininfo.samplerate), outfile.get());
- // 32-bit val, bytes per second
- fwrite32le(static_cast<uint>(ininfo.samplerate)*sizeof(float)*outchans, outfile.get());
- // 16-bit val, frame size
- fwrite16le(static_cast<ushort>(sizeof(float)*outchans), outfile.get());
- // 16-bit val, bits per sample
- fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
- // 16-bit val, extra byte count
- fwrite16le(22, outfile.get());
- // 16-bit val, valid bits per sample
- fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
- // 32-bit val, channel mask
- fwrite32le(0, outfile.get());
- // 16 byte GUID, sub-type format
- fwrite(SUBTYPE_BFORMAT_FLOAT, 1, 16, outfile.get());
-
- fputs("data", outfile.get());
- fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close
- if(ferror(outfile.get()))
- {
- fprintf(stderr, "Error writing wave file header: %s (%d)\n", strerror(errno), errno);
- continue;
- }
-
- auto DataStart = ftell(outfile.get());
-
- auto decoder = std::make_unique<UhjDecoder>();
- auto inmem = std::make_unique<float[]>(BufferLineSize*static_cast<uint>(ininfo.channels));
- auto decmem = al::vector<std::array<float,BufferLineSize>, 16>(outchans);
- auto outmem = std::make_unique<byte4[]>(BufferLineSize*outchans);
-
- /* A number of initial samples need to be skipped to cut the lead-in
- * from the all-pass filter delay. The same number of samples need to
- * be fed through the decoder after reaching the end of the input file
- * to ensure none of the original input is lost.
- */
- size_t LeadIn{UhjDecoder::sFilterDelay};
- sf_count_t LeadOut{UhjDecoder::sFilterDelay};
- while(LeadOut > 0)
- {
- sf_count_t sgot{sf_readf_float(infile.get(), inmem.get(), BufferLineSize)};
- sgot = std::max<sf_count_t>(sgot, 0);
- if(sgot < BufferLineSize)
- {
- const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
- std::fill_n(inmem.get() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
- sgot += remaining;
- LeadOut -= remaining;
- }
-
- auto got = static_cast<size_t>(sgot);
- if(ininfo.channels > 2 || use_general)
- decoder->decode(inmem.get(), static_cast<uint>(ininfo.channels), decmem, got);
- else
- decoder->decode2(inmem.get(), decmem, got);
- if(LeadIn >= got)
- {
- LeadIn -= got;
- continue;
- }
-
- got -= LeadIn;
- for(size_t i{0};i < got;++i)
- {
- /* Attenuate by -3dB for FuMa output levels. */
- constexpr auto inv_sqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
- for(size_t j{0};j < outchans;++j)
- outmem[i*outchans + j] = f32AsLEBytes(decmem[j][LeadIn+i] * inv_sqrt2);
- }
- LeadIn = 0;
-
- size_t wrote{fwrite(outmem.get(), sizeof(byte4)*outchans, got, outfile.get())};
- if(wrote < got)
- {
- fprintf(stderr, "Error writing wave data: %s (%d)\n", strerror(errno), errno);
- break;
- }
- }
-
- auto DataEnd = ftell(outfile.get());
- if(DataEnd > DataStart)
- {
- long dataLen{DataEnd - DataStart};
- if(fseek(outfile.get(), 4, SEEK_SET) == 0)
- fwrite32le(static_cast<uint>(DataEnd-8), outfile.get()); // 'WAVE' header len
- if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0)
- fwrite32le(static_cast<uint>(dataLen), outfile.get()); // 'data' header len
- }
- fflush(outfile.get());
- ++num_decoded;
- }
- if(num_decoded == 0)
- fprintf(stderr, "Failed to decode any input files\n");
- else if(num_decoded < num_files)
- fprintf(stderr, "Decoded %zu of %zu files\n", num_decoded, num_files);
- else
- printf("Decoded %zu file%s\n", num_decoded, (num_decoded==1)?"":"s");
- return 0;
- }
|