🛠️🐜 Antkeeper superbuild with dependencies included https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

200 lines
6.7 KiB

  1. #include "config.h"
  2. #include <cassert>
  3. #include <cmath>
  4. #include <limits>
  5. #include "alnumeric.h"
  6. #include "core/bsinc_tables.h"
  7. #include "defs.h"
  8. #include "hrtfbase.h"
  9. struct CTag;
  10. struct CopyTag;
  11. struct PointTag;
  12. struct LerpTag;
  13. struct CubicTag;
  14. struct BSincTag;
  15. struct FastBSincTag;
  16. namespace {
  17. constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
  18. constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
  19. inline float do_point(const InterpState&, const float *RESTRICT vals, const uint)
  20. { return vals[0]; }
  21. inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac)
  22. { return lerpf(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
  23. inline float do_cubic(const InterpState&, const float *RESTRICT vals, const uint frac)
  24. { return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
  25. inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
  26. {
  27. const size_t m{istate.bsinc.m};
  28. ASSUME(m > 0);
  29. // Calculate the phase index and factor.
  30. const uint pi{frac >> FracPhaseBitDiff};
  31. const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
  32. const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
  33. const float *RESTRICT phd{fil + m};
  34. const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
  35. const float *RESTRICT spd{scd + m};
  36. // Apply the scale and phase interpolated filter.
  37. float r{0.0f};
  38. for(size_t j_f{0};j_f < m;j_f++)
  39. r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
  40. return r;
  41. }
  42. inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
  43. {
  44. const size_t m{istate.bsinc.m};
  45. ASSUME(m > 0);
  46. // Calculate the phase index and factor.
  47. const uint pi{frac >> FracPhaseBitDiff};
  48. const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
  49. const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
  50. const float *RESTRICT phd{fil + m};
  51. // Apply the phase interpolated filter.
  52. float r{0.0f};
  53. for(size_t j_f{0};j_f < m;j_f++)
  54. r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
  55. return r;
  56. }
  57. using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint);
  58. template<SamplerT Sampler>
  59. float *DoResample(const InterpState *state, float *RESTRICT src, uint frac, uint increment,
  60. const al::span<float> dst)
  61. {
  62. const InterpState istate{*state};
  63. for(float &out : dst)
  64. {
  65. out = Sampler(istate, src, frac);
  66. frac += increment;
  67. src += frac>>MixerFracBits;
  68. frac &= MixerFracMask;
  69. }
  70. return dst.data();
  71. }
  72. inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
  73. const float left, const float right)
  74. {
  75. ASSUME(IrSize >= MinIrLength);
  76. for(size_t c{0};c < IrSize;++c)
  77. {
  78. Values[c][0] += Coeffs[c][0] * left;
  79. Values[c][1] += Coeffs[c][1] * right;
  80. }
  81. }
  82. } // namespace
  83. template<>
  84. float *Resample_<CopyTag,CTag>(const InterpState*, float *RESTRICT src, uint, uint,
  85. const al::span<float> dst)
  86. {
  87. #if defined(HAVE_SSE) || defined(HAVE_NEON)
  88. /* Avoid copying the source data if it's aligned like the destination. */
  89. if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
  90. return src;
  91. #endif
  92. std::copy_n(src, dst.size(), dst.begin());
  93. return dst.data();
  94. }
  95. template<>
  96. float *Resample_<PointTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
  97. uint increment, const al::span<float> dst)
  98. { return DoResample<do_point>(state, src, frac, increment, dst); }
  99. template<>
  100. float *Resample_<LerpTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
  101. uint increment, const al::span<float> dst)
  102. { return DoResample<do_lerp>(state, src, frac, increment, dst); }
  103. template<>
  104. float *Resample_<CubicTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
  105. uint increment, const al::span<float> dst)
  106. { return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
  107. template<>
  108. float *Resample_<BSincTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
  109. uint increment, const al::span<float> dst)
  110. { return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
  111. template<>
  112. float *Resample_<FastBSincTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
  113. uint increment, const al::span<float> dst)
  114. { return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
  115. template<>
  116. void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
  117. const MixHrtfFilter *hrtfparams, const size_t BufferSize)
  118. { MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
  119. template<>
  120. void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
  121. const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
  122. {
  123. MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
  124. BufferSize);
  125. }
  126. template<>
  127. void MixDirectHrtf_<CTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
  128. const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
  129. float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
  130. {
  131. MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
  132. IrSize, BufferSize);
  133. }
  134. template<>
  135. void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
  136. float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
  137. {
  138. const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
  139. const auto min_len = minz(Counter, InSamples.size());
  140. for(FloatBufferLine &output : OutBuffer)
  141. {
  142. float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
  143. float gain{*CurrentGains};
  144. const float step{(*TargetGains-gain) * delta};
  145. size_t pos{0};
  146. if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
  147. gain = *TargetGains;
  148. else
  149. {
  150. float step_count{0.0f};
  151. for(;pos != min_len;++pos)
  152. {
  153. dst[pos] += InSamples[pos] * (gain + step*step_count);
  154. step_count += 1.0f;
  155. }
  156. if(pos == Counter)
  157. gain = *TargetGains;
  158. else
  159. gain += step*step_count;
  160. }
  161. *CurrentGains = gain;
  162. ++CurrentGains;
  163. ++TargetGains;
  164. if(!(std::abs(gain) > GainSilenceThreshold))
  165. continue;
  166. for(;pos != InSamples.size();++pos)
  167. dst[pos] += InSamples[pos] * gain;
  168. }
  169. }