|
|
- #ifndef TINYEXR_H_
- #define TINYEXR_H_
- /*
- Copyright (c) 2014 - 2021, Syoyo Fujita and many contributors.
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- * Neither the name of the Syoyo Fujita nor the
- names of its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
- // TinyEXR contains some OpenEXR code, which is licensed under ------------
-
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
-
- // End of OpenEXR license -------------------------------------------------
-
-
- //
- //
- // Do this:
- // #define TINYEXR_IMPLEMENTATION
- // before you include this file in *one* C or C++ file to create the
- // implementation.
- //
- // // i.e. it should look like this:
- // #include ...
- // #include ...
- // #include ...
- // #define TINYEXR_IMPLEMENTATION
- // #include "tinyexr.h"
- //
- //
-
- #include <stddef.h> // for size_t
- #include <stdint.h> // guess stdint.h is available(C99)
-
- #ifdef __cplusplus
- extern "C" {
- #endif
-
- #if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
- defined(__i386) || defined(__i486__) || defined(__i486) || \
- defined(i386) || defined(__ia64__) || defined(__x86_64__)
- #define TINYEXR_X86_OR_X64_CPU 1
- #else
- #define TINYEXR_X86_OR_X64_CPU 0
- #endif
-
- #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || TINYEXR_X86_OR_X64_CPU
- #define TINYEXR_LITTLE_ENDIAN 1
- #else
- #define TINYEXR_LITTLE_ENDIAN 0
- #endif
-
- // Use miniz or not to decode ZIP format pixel. Linking with zlib
- // required if this flas is 0 and TINYEXR_USE_STB_ZLIB is 0.
- #ifndef TINYEXR_USE_MINIZ
- #define TINYEXR_USE_MINIZ (1)
- #endif
-
- // Use the ZIP implementation of stb_image.h and stb_image_write.h.
- #ifndef TINYEXR_USE_STB_ZLIB
- #define TINYEXR_USE_STB_ZLIB (0)
- #endif
-
- // Disable PIZ comporession when applying cpplint.
- #ifndef TINYEXR_USE_PIZ
- #define TINYEXR_USE_PIZ (1)
- #endif
-
- #ifndef TINYEXR_USE_ZFP
- #define TINYEXR_USE_ZFP (0) // TinyEXR extension.
- // http://computation.llnl.gov/projects/floating-point-compression
- #endif
-
- #ifndef TINYEXR_USE_THREAD
- #define TINYEXR_USE_THREAD (0) // No threaded loading.
- // http://computation.llnl.gov/projects/floating-point-compression
- #endif
-
- #ifndef TINYEXR_USE_OPENMP
- #ifdef _OPENMP
- #define TINYEXR_USE_OPENMP (1)
- #else
- #define TINYEXR_USE_OPENMP (0)
- #endif
- #endif
-
- #define TINYEXR_SUCCESS (0)
- #define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1)
- #define TINYEXR_ERROR_INVALID_EXR_VERSION (-2)
- #define TINYEXR_ERROR_INVALID_ARGUMENT (-3)
- #define TINYEXR_ERROR_INVALID_DATA (-4)
- #define TINYEXR_ERROR_INVALID_FILE (-5)
- #define TINYEXR_ERROR_INVALID_PARAMETER (-6)
- #define TINYEXR_ERROR_CANT_OPEN_FILE (-7)
- #define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-8)
- #define TINYEXR_ERROR_INVALID_HEADER (-9)
- #define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-10)
- #define TINYEXR_ERROR_CANT_WRITE_FILE (-11)
- #define TINYEXR_ERROR_SERIALZATION_FAILED (-12)
- #define TINYEXR_ERROR_LAYER_NOT_FOUND (-13)
-
- // @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf }
-
- // pixel type: possible values are: UINT = 0 HALF = 1 FLOAT = 2
- #define TINYEXR_PIXELTYPE_UINT (0)
- #define TINYEXR_PIXELTYPE_HALF (1)
- #define TINYEXR_PIXELTYPE_FLOAT (2)
-
- #define TINYEXR_MAX_HEADER_ATTRIBUTES (1024)
- #define TINYEXR_MAX_CUSTOM_ATTRIBUTES (128)
-
- #define TINYEXR_COMPRESSIONTYPE_NONE (0)
- #define TINYEXR_COMPRESSIONTYPE_RLE (1)
- #define TINYEXR_COMPRESSIONTYPE_ZIPS (2)
- #define TINYEXR_COMPRESSIONTYPE_ZIP (3)
- #define TINYEXR_COMPRESSIONTYPE_PIZ (4)
- #define TINYEXR_COMPRESSIONTYPE_ZFP (128) // TinyEXR extension
-
- #define TINYEXR_ZFP_COMPRESSIONTYPE_RATE (0)
- #define TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION (1)
- #define TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY (2)
-
- #define TINYEXR_TILE_ONE_LEVEL (0)
- #define TINYEXR_TILE_MIPMAP_LEVELS (1)
- #define TINYEXR_TILE_RIPMAP_LEVELS (2)
-
- #define TINYEXR_TILE_ROUND_DOWN (0)
- #define TINYEXR_TILE_ROUND_UP (1)
-
- typedef struct TEXRVersion {
- int version; // this must be 2
- // tile format image;
- // not zero for only a single-part "normal" tiled file (according to spec.)
- int tiled;
- int long_name; // long name attribute
- // deep image(EXR 2.0);
- // for a multi-part file, indicates that at least one part is of type deep* (according to spec.)
- int non_image;
- int multipart; // multi-part(EXR 2.0)
- } EXRVersion;
-
- typedef struct TEXRAttribute {
- char name[256]; // name and type are up to 255 chars long.
- char type[256];
- unsigned char *value; // uint8_t*
- int size;
- int pad0;
- } EXRAttribute;
-
- typedef struct TEXRChannelInfo {
- char name[256]; // less than 255 bytes long
- int pixel_type;
- int x_sampling;
- int y_sampling;
- unsigned char p_linear;
- unsigned char pad[3];
- } EXRChannelInfo;
-
- typedef struct TEXRTile {
- int offset_x;
- int offset_y;
- int level_x;
- int level_y;
-
- int width; // actual width in a tile.
- int height; // actual height int a tile.
-
- unsigned char **images; // image[channels][pixels]
- } EXRTile;
-
- typedef struct TEXRBox2i {
- int min_x;
- int min_y;
- int max_x;
- int max_y;
- } EXRBox2i;
-
- typedef struct TEXRHeader {
- float pixel_aspect_ratio;
- int line_order;
- EXRBox2i data_window;
- EXRBox2i display_window;
- float screen_window_center[2];
- float screen_window_width;
-
- int chunk_count;
-
- // Properties for tiled format(`tiledesc`).
- int tiled;
- int tile_size_x;
- int tile_size_y;
- int tile_level_mode;
- int tile_rounding_mode;
-
- int long_name;
- // for a single-part file, agree with the version field bit 11
- // for a multi-part file, it is consistent with the type of part
- int non_image;
- int multipart;
- unsigned int header_len;
-
- // Custom attributes(exludes required attributes(e.g. `channels`,
- // `compression`, etc)
- int num_custom_attributes;
- EXRAttribute *custom_attributes; // array of EXRAttribute. size =
- // `num_custom_attributes`.
-
- EXRChannelInfo *channels; // [num_channels]
-
- int *pixel_types; // Loaded pixel type(TINYEXR_PIXELTYPE_*) of `images` for
- // each channel. This is overwritten with `requested_pixel_types` when
- // loading.
- int num_channels;
-
- int compression_type; // compression type(TINYEXR_COMPRESSIONTYPE_*)
- int *requested_pixel_types; // Filled initially by
- // ParseEXRHeaderFrom(Meomory|File), then users
- // can edit it(only valid for HALF pixel type
- // channel)
- // name attribute required for multipart files;
- // must be unique and non empty (according to spec.);
- // use EXRSetNameAttr for setting value;
- // max 255 character allowed - excluding terminating zero
- char name[256];
- } EXRHeader;
-
- typedef struct TEXRMultiPartHeader {
- int num_headers;
- EXRHeader *headers;
-
- } EXRMultiPartHeader;
-
- typedef struct TEXRImage {
- EXRTile *tiles; // Tiled pixel data. The application must reconstruct image
- // from tiles manually. NULL if scanline format.
- struct TEXRImage* next_level; // NULL if scanline format or image is the last level.
- int level_x; // x level index
- int level_y; // y level index
-
- unsigned char **images; // image[channels][pixels]. NULL if tiled format.
-
- int width;
- int height;
- int num_channels;
-
- // Properties for tile format.
- int num_tiles;
-
- } EXRImage;
-
- typedef struct TEXRMultiPartImage {
- int num_images;
- EXRImage *images;
-
- } EXRMultiPartImage;
-
- typedef struct TDeepImage {
- const char **channel_names;
- float ***image; // image[channels][scanlines][samples]
- int **offset_table; // offset_table[scanline][offsets]
- int num_channels;
- int width;
- int height;
- int pad0;
- } DeepImage;
-
- // @deprecated { For backward compatibility. Not recommended to use. }
- // Loads single-frame OpenEXR image. Assume EXR image contains A(single channel
- // alpha) or RGB(A) channels.
- // Application must free image data as returned by `out_rgba`
- // Result image format is: float x RGBA x width x hight
- // Returns negative value and may set error string in `err` when there's an
- // error
- extern int LoadEXR(float **out_rgba, int *width, int *height,
- const char *filename, const char **err);
-
- // Loads single-frame OpenEXR image by specifying layer name. Assume EXR image
- // contains A(single channel alpha) or RGB(A) channels. Application must free
- // image data as returned by `out_rgba` Result image format is: float x RGBA x
- // width x hight Returns negative value and may set error string in `err` when
- // there's an error When the specified layer name is not found in the EXR file,
- // the function will return `TINYEXR_ERROR_LAYER_NOT_FOUND`.
- extern int LoadEXRWithLayer(float **out_rgba, int *width, int *height,
- const char *filename, const char *layer_name,
- const char **err);
-
- //
- // Get layer infos from EXR file.
- //
- // @param[out] layer_names List of layer names. Application must free memory
- // after using this.
- // @param[out] num_layers The number of layers
- // @param[out] err Error string(will be filled when the function returns error
- // code). Free it using FreeEXRErrorMessage after using this value.
- //
- // @return TINYEXR_SUCCEES upon success.
- //
- extern int EXRLayers(const char *filename, const char **layer_names[],
- int *num_layers, const char **err);
-
- // @deprecated { to be removed. }
- // Simple wrapper API for ParseEXRHeaderFromFile.
- // checking given file is a EXR file(by just look up header)
- // @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for
- // others
- extern int IsEXR(const char *filename);
-
- // @deprecated { to be removed. }
- // Saves single-frame OpenEXR image. Assume EXR image contains RGB(A) channels.
- // components must be 1(Grayscale), 3(RGB) or 4(RGBA).
- // Input image format is: `float x width x height`, or `float x RGB(A) x width x
- // hight`
- // Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero
- // value.
- // Save image as fp32(FLOAT) format when `save_as_fp16` is 0.
- // Use ZIP compression by default.
- // Returns negative value and may set error string in `err` when there's an
- // error
- extern int SaveEXR(const float *data, const int width, const int height,
- const int components, const int save_as_fp16,
- const char *filename, const char **err);
-
- // Returns the number of resolution levels of the image (including the base)
- extern int EXRNumLevels(const EXRImage* exr_image);
-
- // Initialize EXRHeader struct
- extern void InitEXRHeader(EXRHeader *exr_header);
-
- // Set name attribute of EXRHeader struct (it makes a copy)
- extern void EXRSetNameAttr(EXRHeader *exr_header, const char* name);
-
- // Initialize EXRImage struct
- extern void InitEXRImage(EXRImage *exr_image);
-
- // Frees internal data of EXRHeader struct
- extern int FreeEXRHeader(EXRHeader *exr_header);
-
- // Frees internal data of EXRImage struct
- extern int FreeEXRImage(EXRImage *exr_image);
-
- // Frees error message
- extern void FreeEXRErrorMessage(const char *msg);
-
- // Parse EXR version header of a file.
- extern int ParseEXRVersionFromFile(EXRVersion *version, const char *filename);
-
- // Parse EXR version header from memory-mapped EXR data.
- extern int ParseEXRVersionFromMemory(EXRVersion *version,
- const unsigned char *memory, size_t size);
-
- // Parse single-part OpenEXR header from a file and initialize `EXRHeader`.
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int ParseEXRHeaderFromFile(EXRHeader *header, const EXRVersion *version,
- const char *filename, const char **err);
-
- // Parse single-part OpenEXR header from a memory and initialize `EXRHeader`.
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int ParseEXRHeaderFromMemory(EXRHeader *header,
- const EXRVersion *version,
- const unsigned char *memory, size_t size,
- const char **err);
-
- // Parse multi-part OpenEXR headers from a file and initialize `EXRHeader*`
- // array.
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int ParseEXRMultipartHeaderFromFile(EXRHeader ***headers,
- int *num_headers,
- const EXRVersion *version,
- const char *filename,
- const char **err);
-
- // Parse multi-part OpenEXR headers from a memory and initialize `EXRHeader*`
- // array
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int ParseEXRMultipartHeaderFromMemory(EXRHeader ***headers,
- int *num_headers,
- const EXRVersion *version,
- const unsigned char *memory,
- size_t size, const char **err);
-
- // Loads single-part OpenEXR image from a file.
- // Application must setup `ParseEXRHeaderFromFile` before calling this function.
- // Application can free EXRImage using `FreeEXRImage`
- // Returns negative value and may set error string in `err` when there's an
- // error
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int LoadEXRImageFromFile(EXRImage *image, const EXRHeader *header,
- const char *filename, const char **err);
-
- // Loads single-part OpenEXR image from a memory.
- // Application must setup `EXRHeader` with
- // `ParseEXRHeaderFromMemory` before calling this function.
- // Application can free EXRImage using `FreeEXRImage`
- // Returns negative value and may set error string in `err` when there's an
- // error
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int LoadEXRImageFromMemory(EXRImage *image, const EXRHeader *header,
- const unsigned char *memory,
- const size_t size, const char **err);
-
- // Loads multi-part OpenEXR image from a file.
- // Application must setup `ParseEXRMultipartHeaderFromFile` before calling this
- // function.
- // Application can free EXRImage using `FreeEXRImage`
- // Returns negative value and may set error string in `err` when there's an
- // error
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int LoadEXRMultipartImageFromFile(EXRImage *images,
- const EXRHeader **headers,
- unsigned int num_parts,
- const char *filename,
- const char **err);
-
- // Loads multi-part OpenEXR image from a memory.
- // Application must setup `EXRHeader*` array with
- // `ParseEXRMultipartHeaderFromMemory` before calling this function.
- // Application can free EXRImage using `FreeEXRImage`
- // Returns negative value and may set error string in `err` when there's an
- // error
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int LoadEXRMultipartImageFromMemory(EXRImage *images,
- const EXRHeader **headers,
- unsigned int num_parts,
- const unsigned char *memory,
- const size_t size, const char **err);
-
- // Saves multi-channel, single-frame OpenEXR image to a file.
- // Returns negative value and may set error string in `err` when there's an
- // error
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int SaveEXRImageToFile(const EXRImage *image,
- const EXRHeader *exr_header, const char *filename,
- const char **err);
-
- // Saves multi-channel, single-frame OpenEXR image to a memory.
- // Image is compressed using EXRImage.compression value.
- // Return the number of bytes if success.
- // Return zero and will set error string in `err` when there's an
- // error.
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern size_t SaveEXRImageToMemory(const EXRImage *image,
- const EXRHeader *exr_header,
- unsigned char **memory, const char **err);
-
- // Saves multi-channel, multi-frame OpenEXR image to a memory.
- // Image is compressed using EXRImage.compression value.
- // File global attributes (eg. display_window) must be set in the first header.
- // Returns negative value and may set error string in `err` when there's an
- // error
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int SaveEXRMultipartImageToFile(const EXRImage *images,
- const EXRHeader **exr_headers,
- unsigned int num_parts,
- const char *filename, const char **err);
-
- // Saves multi-channel, multi-frame OpenEXR image to a memory.
- // Image is compressed using EXRImage.compression value.
- // File global attributes (eg. display_window) must be set in the first header.
- // Return the number of bytes if success.
- // Return zero and will set error string in `err` when there's an
- // error.
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern size_t SaveEXRMultipartImageToMemory(const EXRImage *images,
- const EXRHeader **exr_headers,
- unsigned int num_parts,
- unsigned char **memory, const char **err);
- // Loads single-frame OpenEXR deep image.
- // Application must free memory of variables in DeepImage(image, offset_table)
- // Returns negative value and may set error string in `err` when there's an
- // error
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int LoadDeepEXR(DeepImage *out_image, const char *filename,
- const char **err);
-
- // NOT YET IMPLEMENTED:
- // Saves single-frame OpenEXR deep image.
- // Returns negative value and may set error string in `err` when there's an
- // error
- // extern int SaveDeepEXR(const DeepImage *in_image, const char *filename,
- // const char **err);
-
- // NOT YET IMPLEMENTED:
- // Loads multi-part OpenEXR deep image.
- // Application must free memory of variables in DeepImage(image, offset_table)
- // extern int LoadMultiPartDeepEXR(DeepImage **out_image, int num_parts, const
- // char *filename,
- // const char **err);
-
- // For emscripten.
- // Loads single-frame OpenEXR image from memory. Assume EXR image contains
- // RGB(A) channels.
- // Returns negative value and may set error string in `err` when there's an
- // error
- // When there was an error message, Application must free `err` with
- // FreeEXRErrorMessage()
- extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
- const unsigned char *memory, size_t size,
- const char **err);
-
- #ifdef __cplusplus
- }
- #endif
-
- #endif // TINYEXR_H_
-
- #ifdef TINYEXR_IMPLEMENTATION
- #ifndef TINYEXR_IMPLEMENTATION_DEFINED
- #define TINYEXR_IMPLEMENTATION_DEFINED
-
- #ifdef _WIN32
-
- #ifndef WIN32_LEAN_AND_MEAN
- #define WIN32_LEAN_AND_MEAN
- #endif
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h> // for UTF-8
-
- #endif
-
- #include <algorithm>
- #include <cassert>
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <sstream>
-
- // #include <iostream> // debug
-
- #include <limits>
- #include <string>
- #include <vector>
- #include <set>
-
- // https://stackoverflow.com/questions/5047971/how-do-i-check-for-c11-support
- #if __cplusplus > 199711L || (defined(_MSC_VER) && _MSC_VER >= 1900)
- #define TINYEXR_HAS_CXX11 (1)
- // C++11
- #include <cstdint>
-
- #if TINYEXR_USE_THREAD
- #include <atomic>
- #include <thread>
- #endif
-
- #endif // __cplusplus > 199711L
-
- #if TINYEXR_USE_OPENMP
- #include <omp.h>
- #endif
-
- #if TINYEXR_USE_MINIZ
- #include <miniz.h>
- #else
- // Issue #46. Please include your own zlib-compatible API header before
- // including `tinyexr.h`
- //#include "zlib.h"
- #endif
-
- #if TINYEXR_USE_STB_ZLIB
- // Since we don't know where a project has stb_image.h and stb_image_write.h
- // and whether they are in the include path, we don't include them here, and
- // instead declare the two relevant functions manually.
- // from stb_image.h:
- extern "C" int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
- // from stb_image_write.h:
- extern "C" unsigned char *stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality);
- #endif
-
- #if TINYEXR_USE_ZFP
-
- #ifdef __clang__
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Weverything"
- #endif
-
- #include "zfp.h"
-
- #ifdef __clang__
- #pragma clang diagnostic pop
- #endif
-
- #endif
-
- namespace tinyexr {
-
- #if __cplusplus > 199711L
- // C++11
- typedef uint64_t tinyexr_uint64;
- typedef int64_t tinyexr_int64;
- #else
- // Although `long long` is not a standard type pre C++11, assume it is defined
- // as a compiler's extension.
- #ifdef __clang__
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wc++11-long-long"
- #endif
- typedef unsigned long long tinyexr_uint64;
- typedef long long tinyexr_int64;
- #ifdef __clang__
- #pragma clang diagnostic pop
- #endif
- #endif
-
- // static bool IsBigEndian(void) {
- // union {
- // unsigned int i;
- // char c[4];
- // } bint = {0x01020304};
- //
- // return bint.c[0] == 1;
- //}
-
- static void SetErrorMessage(const std::string &msg, const char **err) {
- if (err) {
- #ifdef _WIN32
- (*err) = _strdup(msg.c_str());
- #else
- (*err) = strdup(msg.c_str());
- #endif
- }
- }
-
- #if 0
- static void SetWarningMessage(const std::string &msg, const char **warn) {
- if (warn) {
- #ifdef _WIN32
- (*warn) = _strdup(msg.c_str());
- #else
- (*warn) = strdup(msg.c_str());
- #endif
- }
- }
- #endif
-
- static const int kEXRVersionSize = 8;
-
- static void cpy2(unsigned short *dst_val, const unsigned short *src_val) {
- unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
- const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
-
- dst[0] = src[0];
- dst[1] = src[1];
- }
-
- static void swap2(unsigned short *val) {
- #ifdef TINYEXR_LITTLE_ENDIAN
- (void)val;
- #else
- unsigned short tmp = *val;
- unsigned char *dst = reinterpret_cast<unsigned char *>(val);
- unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
-
- dst[0] = src[1];
- dst[1] = src[0];
- #endif
- }
-
- #ifdef __clang__
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wunused-function"
- #endif
-
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-function"
- #endif
- static void cpy4(int *dst_val, const int *src_val) {
- unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
- const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
-
- dst[0] = src[0];
- dst[1] = src[1];
- dst[2] = src[2];
- dst[3] = src[3];
- }
-
- static void cpy4(unsigned int *dst_val, const unsigned int *src_val) {
- unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
- const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
-
- dst[0] = src[0];
- dst[1] = src[1];
- dst[2] = src[2];
- dst[3] = src[3];
- }
-
- static void cpy4(float *dst_val, const float *src_val) {
- unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
- const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
-
- dst[0] = src[0];
- dst[1] = src[1];
- dst[2] = src[2];
- dst[3] = src[3];
- }
- #ifdef __clang__
- #pragma clang diagnostic pop
- #endif
-
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
-
- static void swap4(unsigned int *val) {
- #ifdef TINYEXR_LITTLE_ENDIAN
- (void)val;
- #else
- unsigned int tmp = *val;
- unsigned char *dst = reinterpret_cast<unsigned char *>(val);
- unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
-
- dst[0] = src[3];
- dst[1] = src[2];
- dst[2] = src[1];
- dst[3] = src[0];
- #endif
- }
-
- static void swap4(int *val) {
- #ifdef TINYEXR_LITTLE_ENDIAN
- (void)val;
- #else
- int tmp = *val;
- unsigned char *dst = reinterpret_cast<unsigned char *>(val);
- unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
-
- dst[0] = src[3];
- dst[1] = src[2];
- dst[2] = src[1];
- dst[3] = src[0];
- #endif
- }
-
- static void swap4(float *val) {
- #ifdef TINYEXR_LITTLE_ENDIAN
- (void)val;
- #else
- float tmp = *val;
- unsigned char *dst = reinterpret_cast<unsigned char *>(val);
- unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
-
- dst[0] = src[3];
- dst[1] = src[2];
- dst[2] = src[1];
- dst[3] = src[0];
- #endif
- }
-
- #if 0
- static void cpy8(tinyexr::tinyexr_uint64 *dst_val, const tinyexr::tinyexr_uint64 *src_val) {
- unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
- const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
-
- dst[0] = src[0];
- dst[1] = src[1];
- dst[2] = src[2];
- dst[3] = src[3];
- dst[4] = src[4];
- dst[5] = src[5];
- dst[6] = src[6];
- dst[7] = src[7];
- }
- #endif
-
- static void swap8(tinyexr::tinyexr_uint64 *val) {
- #ifdef TINYEXR_LITTLE_ENDIAN
- (void)val;
- #else
- tinyexr::tinyexr_uint64 tmp = (*val);
- unsigned char *dst = reinterpret_cast<unsigned char *>(val);
- unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
-
- dst[0] = src[7];
- dst[1] = src[6];
- dst[2] = src[5];
- dst[3] = src[4];
- dst[4] = src[3];
- dst[5] = src[2];
- dst[6] = src[1];
- dst[7] = src[0];
- #endif
- }
-
- // https://gist.github.com/rygorous/2156668
- union FP32 {
- unsigned int u;
- float f;
- struct {
- #if TINYEXR_LITTLE_ENDIAN
- unsigned int Mantissa : 23;
- unsigned int Exponent : 8;
- unsigned int Sign : 1;
- #else
- unsigned int Sign : 1;
- unsigned int Exponent : 8;
- unsigned int Mantissa : 23;
- #endif
- } s;
- };
-
- #ifdef __clang__
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wpadded"
- #endif
-
- union FP16 {
- unsigned short u;
- struct {
- #if TINYEXR_LITTLE_ENDIAN
- unsigned int Mantissa : 10;
- unsigned int Exponent : 5;
- unsigned int Sign : 1;
- #else
- unsigned int Sign : 1;
- unsigned int Exponent : 5;
- unsigned int Mantissa : 10;
- #endif
- } s;
- };
-
- #ifdef __clang__
- #pragma clang diagnostic pop
- #endif
-
- static FP32 half_to_float(FP16 h) {
- static const FP32 magic = {113 << 23};
- static const unsigned int shifted_exp = 0x7c00
- << 13; // exponent mask after shift
- FP32 o;
-
- o.u = (h.u & 0x7fffU) << 13U; // exponent/mantissa bits
- unsigned int exp_ = shifted_exp & o.u; // just the exponent
- o.u += (127 - 15) << 23; // exponent adjust
-
- // handle exponent special cases
- if (exp_ == shifted_exp) // Inf/NaN?
- o.u += (128 - 16) << 23; // extra exp adjust
- else if (exp_ == 0) // Zero/Denormal?
- {
- o.u += 1 << 23; // extra exp adjust
- o.f -= magic.f; // renormalize
- }
-
- o.u |= (h.u & 0x8000U) << 16U; // sign bit
- return o;
- }
-
- static FP16 float_to_half_full(FP32 f) {
- FP16 o = {0};
-
- // Based on ISPC reference code (with minor modifications)
- if (f.s.Exponent == 0) // Signed zero/denormal (which will underflow)
- o.s.Exponent = 0;
- else if (f.s.Exponent == 255) // Inf or NaN (all exponent bits set)
- {
- o.s.Exponent = 31;
- o.s.Mantissa = f.s.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf
- } else // Normalized number
- {
- // Exponent unbias the single, then bias the halfp
- int newexp = f.s.Exponent - 127 + 15;
- if (newexp >= 31) // Overflow, return signed infinity
- o.s.Exponent = 31;
- else if (newexp <= 0) // Underflow
- {
- if ((14 - newexp) <= 24) // Mantissa might be non-zero
- {
- unsigned int mant = f.s.Mantissa | 0x800000; // Hidden 1 bit
- o.s.Mantissa = mant >> (14 - newexp);
- if ((mant >> (13 - newexp)) & 1) // Check for rounding
- o.u++; // Round, might overflow into exp bit, but this is OK
- }
- } else {
- o.s.Exponent = static_cast<unsigned int>(newexp);
- o.s.Mantissa = f.s.Mantissa >> 13;
- if (f.s.Mantissa & 0x1000) // Check for rounding
- o.u++; // Round, might overflow to inf, this is OK
- }
- }
-
- o.s.Sign = f.s.Sign;
- return o;
- }
-
- // NOTE: From OpenEXR code
- // #define IMF_INCREASING_Y 0
- // #define IMF_DECREASING_Y 1
- // #define IMF_RAMDOM_Y 2
- //
- // #define IMF_NO_COMPRESSION 0
- // #define IMF_RLE_COMPRESSION 1
- // #define IMF_ZIPS_COMPRESSION 2
- // #define IMF_ZIP_COMPRESSION 3
- // #define IMF_PIZ_COMPRESSION 4
- // #define IMF_PXR24_COMPRESSION 5
- // #define IMF_B44_COMPRESSION 6
- // #define IMF_B44A_COMPRESSION 7
-
- #ifdef __clang__
- #pragma clang diagnostic push
-
- #if __has_warning("-Wzero-as-null-pointer-constant")
- #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
- #endif
-
- #endif
-
- static const char *ReadString(std::string *s, const char *ptr, size_t len) {
- // Read untile NULL(\0).
- const char *p = ptr;
- const char *q = ptr;
- while ((size_t(q - ptr) < len) && (*q) != 0) {
- q++;
- }
-
- if (size_t(q - ptr) >= len) {
- (*s).clear();
- return NULL;
- }
-
- (*s) = std::string(p, q);
-
- return q + 1; // skip '\0'
- }
-
- static bool ReadAttribute(std::string *name, std::string *type,
- std::vector<unsigned char> *data, size_t *marker_size,
- const char *marker, size_t size) {
- size_t name_len = strnlen(marker, size);
- if (name_len == size) {
- // String does not have a terminating character.
- return false;
- }
- *name = std::string(marker, name_len);
-
- marker += name_len + 1;
- size -= name_len + 1;
-
- size_t type_len = strnlen(marker, size);
- if (type_len == size) {
- return false;
- }
- *type = std::string(marker, type_len);
-
- marker += type_len + 1;
- size -= type_len + 1;
-
- if (size < sizeof(uint32_t)) {
- return false;
- }
-
- uint32_t data_len;
- memcpy(&data_len, marker, sizeof(uint32_t));
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
-
- if (data_len == 0) {
- if ((*type).compare("string") == 0) {
- // Accept empty string attribute.
-
- marker += sizeof(uint32_t);
- size -= sizeof(uint32_t);
-
- *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t);
-
- data->resize(1);
- (*data)[0] = '\0';
-
- return true;
- } else {
- return false;
- }
- }
-
- marker += sizeof(uint32_t);
- size -= sizeof(uint32_t);
-
- if (size < data_len) {
- return false;
- }
-
- data->resize(static_cast<size_t>(data_len));
- memcpy(&data->at(0), marker, static_cast<size_t>(data_len));
-
- *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t) + data_len;
- return true;
- }
-
- static void WriteAttributeToMemory(std::vector<unsigned char> *out,
- const char *name, const char *type,
- const unsigned char *data, int len) {
- out->insert(out->end(), name, name + strlen(name) + 1);
- out->insert(out->end(), type, type + strlen(type) + 1);
-
- int outLen = len;
- tinyexr::swap4(&outLen);
- out->insert(out->end(), reinterpret_cast<unsigned char *>(&outLen),
- reinterpret_cast<unsigned char *>(&outLen) + sizeof(int));
- out->insert(out->end(), data, data + len);
- }
-
- typedef struct TChannelInfo {
- std::string name; // less than 255 bytes long
- int pixel_type;
- int requested_pixel_type;
- int x_sampling;
- int y_sampling;
- unsigned char p_linear;
- unsigned char pad[3];
- } ChannelInfo;
-
- typedef struct {
- int min_x;
- int min_y;
- int max_x;
- int max_y;
- } Box2iInfo;
-
- struct HeaderInfo {
- std::vector<tinyexr::ChannelInfo> channels;
- std::vector<EXRAttribute> attributes;
-
- Box2iInfo data_window;
- int line_order;
- Box2iInfo display_window;
- float screen_window_center[2];
- float screen_window_width;
- float pixel_aspect_ratio;
-
- int chunk_count;
-
- // Tiled format
- int tiled; // Non-zero if the part is tiled.
- int tile_size_x;
- int tile_size_y;
- int tile_level_mode;
- int tile_rounding_mode;
-
- unsigned int header_len;
-
- int compression_type;
-
- // required for multi-part or non-image files
- std::string name;
- // required for multi-part or non-image files
- std::string type;
-
- void clear() {
- channels.clear();
- attributes.clear();
-
- data_window.min_x = 0;
- data_window.min_y = 0;
- data_window.max_x = 0;
- data_window.max_y = 0;
- line_order = 0;
- display_window.min_x = 0;
- display_window.min_y = 0;
- display_window.max_x = 0;
- display_window.max_y = 0;
- screen_window_center[0] = 0.0f;
- screen_window_center[1] = 0.0f;
- screen_window_width = 0.0f;
- pixel_aspect_ratio = 0.0f;
-
- chunk_count = 0;
-
- // Tiled format
- tiled = 0;
- tile_size_x = 0;
- tile_size_y = 0;
- tile_level_mode = 0;
- tile_rounding_mode = 0;
-
- header_len = 0;
- compression_type = 0;
-
- name.clear();
- type.clear();
- }
- };
-
- static bool ReadChannelInfo(std::vector<ChannelInfo> &channels,
- const std::vector<unsigned char> &data) {
- const char *p = reinterpret_cast<const char *>(&data.at(0));
-
- for (;;) {
- if ((*p) == 0) {
- break;
- }
- ChannelInfo info;
-
- tinyexr_int64 data_len = static_cast<tinyexr_int64>(data.size()) -
- (p - reinterpret_cast<const char *>(data.data()));
- if (data_len < 0) {
- return false;
- }
-
- p = ReadString(&info.name, p, size_t(data_len));
- if ((p == NULL) && (info.name.empty())) {
- // Buffer overrun. Issue #51.
- return false;
- }
-
- const unsigned char *data_end =
- reinterpret_cast<const unsigned char *>(p) + 16;
- if (data_end >= (data.data() + data.size())) {
- return false;
- }
-
- memcpy(&info.pixel_type, p, sizeof(int));
- p += 4;
- info.p_linear = static_cast<unsigned char>(p[0]); // uchar
- p += 1 + 3; // reserved: uchar[3]
- memcpy(&info.x_sampling, p, sizeof(int)); // int
- p += 4;
- memcpy(&info.y_sampling, p, sizeof(int)); // int
- p += 4;
-
- tinyexr::swap4(&info.pixel_type);
- tinyexr::swap4(&info.x_sampling);
- tinyexr::swap4(&info.y_sampling);
-
- channels.push_back(info);
- }
-
- return true;
- }
-
- static void WriteChannelInfo(std::vector<unsigned char> &data,
- const std::vector<ChannelInfo> &channels) {
- size_t sz = 0;
-
- // Calculate total size.
- for (size_t c = 0; c < channels.size(); c++) {
- sz += channels[c].name.length() + 1; // +1 for \0
- sz += 16; // 4 * int
- }
- data.resize(sz + 1);
-
- unsigned char *p = &data.at(0);
-
- for (size_t c = 0; c < channels.size(); c++) {
- memcpy(p, channels[c].name.c_str(), channels[c].name.length());
- p += channels[c].name.length();
- (*p) = '\0';
- p++;
-
- int pixel_type = channels[c].requested_pixel_type;
- int x_sampling = channels[c].x_sampling;
- int y_sampling = channels[c].y_sampling;
- tinyexr::swap4(&pixel_type);
- tinyexr::swap4(&x_sampling);
- tinyexr::swap4(&y_sampling);
-
- memcpy(p, &pixel_type, sizeof(int));
- p += sizeof(int);
-
- (*p) = channels[c].p_linear;
- p += 4;
-
- memcpy(p, &x_sampling, sizeof(int));
- p += sizeof(int);
-
- memcpy(p, &y_sampling, sizeof(int));
- p += sizeof(int);
- }
-
- (*p) = '\0';
- }
-
- static void CompressZip(unsigned char *dst,
- tinyexr::tinyexr_uint64 &compressedSize,
- const unsigned char *src, unsigned long src_size) {
- std::vector<unsigned char> tmpBuf(src_size);
-
- //
- // Apply EXR-specific? postprocess. Grabbed from OpenEXR's
- // ImfZipCompressor.cpp
- //
-
- //
- // Reorder the pixel data.
- //
-
- const char *srcPtr = reinterpret_cast<const char *>(src);
-
- {
- char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0));
- char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2;
- const char *stop = srcPtr + src_size;
-
- for (;;) {
- if (srcPtr < stop)
- *(t1++) = *(srcPtr++);
- else
- break;
-
- if (srcPtr < stop)
- *(t2++) = *(srcPtr++);
- else
- break;
- }
- }
-
- //
- // Predictor.
- //
-
- {
- unsigned char *t = &tmpBuf.at(0) + 1;
- unsigned char *stop = &tmpBuf.at(0) + src_size;
- int p = t[-1];
-
- while (t < stop) {
- int d = int(t[0]) - p + (128 + 256);
- p = t[0];
- t[0] = static_cast<unsigned char>(d);
- ++t;
- }
- }
-
- #if TINYEXR_USE_MINIZ
- //
- // Compress the data using miniz
- //
-
- mz_ulong outSize = mz_compressBound(src_size);
- int ret = mz_compress(
- dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)),
- src_size);
- assert(ret == MZ_OK);
- (void)ret;
-
- compressedSize = outSize;
- #elif TINYEXR_USE_STB_ZLIB
- int outSize;
- unsigned char* r = stbi_zlib_compress(const_cast<unsigned char*>(&tmpBuf.at(0)), src_size, &outSize, 8);
- assert(r);
- memcpy(dst, r, outSize);
- free(r);
-
- compressedSize = outSize;
- #else
- uLong outSize = compressBound(static_cast<uLong>(src_size));
- int ret = compress(dst, &outSize, static_cast<const Bytef *>(&tmpBuf.at(0)),
- src_size);
- assert(ret == Z_OK);
-
- compressedSize = outSize;
- #endif
-
- // Use uncompressed data when compressed data is larger than uncompressed.
- // (Issue 40)
- if (compressedSize >= src_size) {
- compressedSize = src_size;
- memcpy(dst, src, src_size);
- }
- }
-
- static bool DecompressZip(unsigned char *dst,
- unsigned long *uncompressed_size /* inout */,
- const unsigned char *src, unsigned long src_size) {
- if ((*uncompressed_size) == src_size) {
- // Data is not compressed(Issue 40).
- memcpy(dst, src, src_size);
- return true;
- }
- std::vector<unsigned char> tmpBuf(*uncompressed_size);
-
- #if TINYEXR_USE_MINIZ
- int ret =
- mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
- if (MZ_OK != ret) {
- return false;
- }
- #elif TINYEXR_USE_STB_ZLIB
- int ret = stbi_zlib_decode_buffer(reinterpret_cast<char*>(&tmpBuf.at(0)),
- *uncompressed_size, reinterpret_cast<const char*>(src), src_size);
- if (ret < 0) {
- return false;
- }
- #else
- int ret = uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
- if (Z_OK != ret) {
- return false;
- }
- #endif
-
- //
- // Apply EXR-specific? postprocess. Grabbed from OpenEXR's
- // ImfZipCompressor.cpp
- //
-
- // Predictor.
- {
- unsigned char *t = &tmpBuf.at(0) + 1;
- unsigned char *stop = &tmpBuf.at(0) + (*uncompressed_size);
-
- while (t < stop) {
- int d = int(t[-1]) + int(t[0]) - 128;
- t[0] = static_cast<unsigned char>(d);
- ++t;
- }
- }
-
- // Reorder the pixel data.
- {
- const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0));
- const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) +
- (*uncompressed_size + 1) / 2;
- char *s = reinterpret_cast<char *>(dst);
- char *stop = s + (*uncompressed_size);
-
- for (;;) {
- if (s < stop)
- *(s++) = *(t1++);
- else
- break;
-
- if (s < stop)
- *(s++) = *(t2++);
- else
- break;
- }
- }
-
- return true;
- }
-
- // RLE code from OpenEXR --------------------------------------
-
- #ifdef __clang__
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wsign-conversion"
- #if __has_warning("-Wextra-semi-stmt")
- #pragma clang diagnostic ignored "-Wextra-semi-stmt"
- #endif
- #endif
-
- #ifdef _MSC_VER
- #pragma warning(push)
- #pragma warning(disable : 4204) // nonstandard extension used : non-constant
- // aggregate initializer (also supported by GNU
- // C and C99, so no big deal)
- #pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to
- // 'int', possible loss of data
- #pragma warning(disable : 4267) // 'argument': conversion from '__int64' to
- // 'int', possible loss of data
- #pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is
- // deprecated. Instead, use the ISO C and C++
- // conformant name: _strdup.
- #endif
-
- const int MIN_RUN_LENGTH = 3;
- const int MAX_RUN_LENGTH = 127;
-
- //
- // Compress an array of bytes, using run-length encoding,
- // and return the length of the compressed data.
- //
-
- static int rleCompress(int inLength, const char in[], signed char out[]) {
- const char *inEnd = in + inLength;
- const char *runStart = in;
- const char *runEnd = in + 1;
- signed char *outWrite = out;
-
- while (runStart < inEnd) {
- while (runEnd < inEnd && *runStart == *runEnd &&
- runEnd - runStart - 1 < MAX_RUN_LENGTH) {
- ++runEnd;
- }
-
- if (runEnd - runStart >= MIN_RUN_LENGTH) {
- //
- // Compressible run
- //
-
- *outWrite++ = static_cast<char>(runEnd - runStart) - 1;
- *outWrite++ = *(reinterpret_cast<const signed char *>(runStart));
- runStart = runEnd;
- } else {
- //
- // Uncompressable run
- //
-
- while (runEnd < inEnd &&
- ((runEnd + 1 >= inEnd || *runEnd != *(runEnd + 1)) ||
- (runEnd + 2 >= inEnd || *(runEnd + 1) != *(runEnd + 2))) &&
- runEnd - runStart < MAX_RUN_LENGTH) {
- ++runEnd;
- }
-
- *outWrite++ = static_cast<char>(runStart - runEnd);
-
- while (runStart < runEnd) {
- *outWrite++ = *(reinterpret_cast<const signed char *>(runStart++));
- }
- }
-
- ++runEnd;
- }
-
- return static_cast<int>(outWrite - out);
- }
-
- //
- // Uncompress an array of bytes compressed with rleCompress().
- // Returns the length of the oncompressed data, or 0 if the
- // length of the uncompressed data would be more than maxLength.
- //
-
- static int rleUncompress(int inLength, int maxLength, const signed char in[],
- char out[]) {
- char *outStart = out;
-
- while (inLength > 0) {
- if (*in < 0) {
- int count = -(static_cast<int>(*in++));
- inLength -= count + 1;
-
- // Fixes #116: Add bounds check to in buffer.
- if ((0 > (maxLength -= count)) || (inLength < 0)) return 0;
-
- memcpy(out, in, count);
- out += count;
- in += count;
- } else {
- int count = *in++;
- inLength -= 2;
-
- if (0 > (maxLength -= count + 1)) return 0;
-
- memset(out, *reinterpret_cast<const char *>(in), count + 1);
- out += count + 1;
-
- in++;
- }
- }
-
- return static_cast<int>(out - outStart);
- }
-
- #ifdef __clang__
- #pragma clang diagnostic pop
- #endif
-
- // End of RLE code from OpenEXR -----------------------------------
-
- static void CompressRle(unsigned char *dst,
- tinyexr::tinyexr_uint64 &compressedSize,
- const unsigned char *src, unsigned long src_size) {
- std::vector<unsigned char> tmpBuf(src_size);
-
- //
- // Apply EXR-specific? postprocess. Grabbed from OpenEXR's
- // ImfRleCompressor.cpp
- //
-
- //
- // Reorder the pixel data.
- //
-
- const char *srcPtr = reinterpret_cast<const char *>(src);
-
- {
- char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0));
- char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2;
- const char *stop = srcPtr + src_size;
-
- for (;;) {
- if (srcPtr < stop)
- *(t1++) = *(srcPtr++);
- else
- break;
-
- if (srcPtr < stop)
- *(t2++) = *(srcPtr++);
- else
- break;
- }
- }
-
- //
- // Predictor.
- //
-
- {
- unsigned char *t = &tmpBuf.at(0) + 1;
- unsigned char *stop = &tmpBuf.at(0) + src_size;
- int p = t[-1];
-
- while (t < stop) {
- int d = int(t[0]) - p + (128 + 256);
- p = t[0];
- t[0] = static_cast<unsigned char>(d);
- ++t;
- }
- }
-
- // outSize will be (srcSiz * 3) / 2 at max.
- int outSize = rleCompress(static_cast<int>(src_size),
- reinterpret_cast<const char *>(&tmpBuf.at(0)),
- reinterpret_cast<signed char *>(dst));
- assert(outSize > 0);
-
- compressedSize = static_cast<tinyexr::tinyexr_uint64>(outSize);
-
- // Use uncompressed data when compressed data is larger than uncompressed.
- // (Issue 40)
- if (compressedSize >= src_size) {
- compressedSize = src_size;
- memcpy(dst, src, src_size);
- }
- }
-
- static bool DecompressRle(unsigned char *dst,
- const unsigned long uncompressed_size,
- const unsigned char *src, unsigned long src_size) {
- if (uncompressed_size == src_size) {
- // Data is not compressed(Issue 40).
- memcpy(dst, src, src_size);
- return true;
- }
-
- // Workaround for issue #112.
- // TODO(syoyo): Add more robust out-of-bounds check in `rleUncompress`.
- if (src_size <= 2) {
- return false;
- }
-
- std::vector<unsigned char> tmpBuf(uncompressed_size);
-
- int ret = rleUncompress(static_cast<int>(src_size),
- static_cast<int>(uncompressed_size),
- reinterpret_cast<const signed char *>(src),
- reinterpret_cast<char *>(&tmpBuf.at(0)));
- if (ret != static_cast<int>(uncompressed_size)) {
- return false;
- }
-
- //
- // Apply EXR-specific? postprocess. Grabbed from OpenEXR's
- // ImfRleCompressor.cpp
- //
-
- // Predictor.
- {
- unsigned char *t = &tmpBuf.at(0) + 1;
- unsigned char *stop = &tmpBuf.at(0) + uncompressed_size;
-
- while (t < stop) {
- int d = int(t[-1]) + int(t[0]) - 128;
- t[0] = static_cast<unsigned char>(d);
- ++t;
- }
- }
-
- // Reorder the pixel data.
- {
- const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0));
- const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) +
- (uncompressed_size + 1) / 2;
- char *s = reinterpret_cast<char *>(dst);
- char *stop = s + uncompressed_size;
-
- for (;;) {
- if (s < stop)
- *(s++) = *(t1++);
- else
- break;
-
- if (s < stop)
- *(s++) = *(t2++);
- else
- break;
- }
- }
-
- return true;
- }
-
- #if TINYEXR_USE_PIZ
-
- #ifdef __clang__
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wc++11-long-long"
- #pragma clang diagnostic ignored "-Wold-style-cast"
- #pragma clang diagnostic ignored "-Wpadded"
- #pragma clang diagnostic ignored "-Wsign-conversion"
- #pragma clang diagnostic ignored "-Wc++11-extensions"
- #pragma clang diagnostic ignored "-Wconversion"
- #pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
-
- #if __has_warning("-Wcast-qual")
- #pragma clang diagnostic ignored "-Wcast-qual"
- #endif
-
- #if __has_warning("-Wextra-semi-stmt")
- #pragma clang diagnostic ignored "-Wextra-semi-stmt"
- #endif
-
- #endif
-
- //
- // PIZ compress/uncompress, based on OpenEXR's ImfPizCompressor.cpp
- //
- // -----------------------------------------------------------------
- // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC)
- // (3 clause BSD license)
- //
-
- struct PIZChannelData {
- unsigned short *start;
- unsigned short *end;
- int nx;
- int ny;
- int ys;
- int size;
- };
-
- //-----------------------------------------------------------------------------
- //
- // 16-bit Haar Wavelet encoding and decoding
- //
- // The source code in this file is derived from the encoding
- // and decoding routines written by Christian Rouet for his
- // PIZ image file format.
- //
- //-----------------------------------------------------------------------------
-
- //
- // Wavelet basis functions without modulo arithmetic; they produce
- // the best compression ratios when the wavelet-transformed data are
- // Huffman-encoded, but the wavelet transform works only for 14-bit
- // data (untransformed data values must be less than (1 << 14)).
- //
-
- inline void wenc14(unsigned short a, unsigned short b, unsigned short &l,
- unsigned short &h) {
- short as = static_cast<short>(a);
- short bs = static_cast<short>(b);
-
- short ms = (as + bs) >> 1;
- short ds = as - bs;
-
- l = static_cast<unsigned short>(ms);
- h = static_cast<unsigned short>(ds);
- }
-
- inline void wdec14(unsigned short l, unsigned short h, unsigned short &a,
- unsigned short &b) {
- short ls = static_cast<short>(l);
- short hs = static_cast<short>(h);
-
- int hi = hs;
- int ai = ls + (hi & 1) + (hi >> 1);
-
- short as = static_cast<short>(ai);
- short bs = static_cast<short>(ai - hi);
-
- a = static_cast<unsigned short>(as);
- b = static_cast<unsigned short>(bs);
- }
-
- //
- // Wavelet basis functions with modulo arithmetic; they work with full
- // 16-bit data, but Huffman-encoding the wavelet-transformed data doesn't
- // compress the data quite as well.
- //
-
- const int NBITS = 16;
- const int A_OFFSET = 1 << (NBITS - 1);
- const int M_OFFSET = 1 << (NBITS - 1);
- const int MOD_MASK = (1 << NBITS) - 1;
-
- inline void wenc16(unsigned short a, unsigned short b, unsigned short &l,
- unsigned short &h) {
- int ao = (a + A_OFFSET) & MOD_MASK;
- int m = ((ao + b) >> 1);
- int d = ao - b;
-
- if (d < 0) m = (m + M_OFFSET) & MOD_MASK;
-
- d &= MOD_MASK;
-
- l = static_cast<unsigned short>(m);
- h = static_cast<unsigned short>(d);
- }
-
- inline void wdec16(unsigned short l, unsigned short h, unsigned short &a,
- unsigned short &b) {
- int m = l;
- int d = h;
- int bb = (m - (d >> 1)) & MOD_MASK;
- int aa = (d + bb - A_OFFSET) & MOD_MASK;
- b = static_cast<unsigned short>(bb);
- a = static_cast<unsigned short>(aa);
- }
-
- //
- // 2D Wavelet encoding:
- //
-
- static void wav2Encode(
- unsigned short *in, // io: values are transformed in place
- int nx, // i : x size
- int ox, // i : x offset
- int ny, // i : y size
- int oy, // i : y offset
- unsigned short mx) // i : maximum in[x][y] value
- {
- bool w14 = (mx < (1 << 14));
- int n = (nx > ny) ? ny : nx;
- int p = 1; // == 1 << level
- int p2 = 2; // == 1 << (level+1)
-
- //
- // Hierarchical loop on smaller dimension n
- //
-
- while (p2 <= n) {
- unsigned short *py = in;
- unsigned short *ey = in + oy * (ny - p2);
- int oy1 = oy * p;
- int oy2 = oy * p2;
- int ox1 = ox * p;
- int ox2 = ox * p2;
- unsigned short i00, i01, i10, i11;
-
- //
- // Y loop
- //
-
- for (; py <= ey; py += oy2) {
- unsigned short *px = py;
- unsigned short *ex = py + ox * (nx - p2);
-
- //
- // X loop
- //
-
- for (; px <= ex; px += ox2) {
- unsigned short *p01 = px + ox1;
- unsigned short *p10 = px + oy1;
- unsigned short *p11 = p10 + ox1;
-
- //
- // 2D wavelet encoding
- //
-
- if (w14) {
- wenc14(*px, *p01, i00, i01);
- wenc14(*p10, *p11, i10, i11);
- wenc14(i00, i10, *px, *p10);
- wenc14(i01, i11, *p01, *p11);
- } else {
- wenc16(*px, *p01, i00, i01);
- wenc16(*p10, *p11, i10, i11);
- wenc16(i00, i10, *px, *p10);
- wenc16(i01, i11, *p01, *p11);
- }
- }
-
- //
- // Encode (1D) odd column (still in Y loop)
- //
-
- if (nx & p) {
- unsigned short *p10 = px + oy1;
-
- if (w14)
- wenc14(*px, *p10, i00, *p10);
- else
- wenc16(*px, *p10, i00, *p10);
-
- *px = i00;
- }
- }
-
- //
- // Encode (1D) odd line (must loop in X)
- //
-
- if (ny & p) {
- unsigned short *px = py;
- unsigned short *ex = py + ox * (nx - p2);
-
- for (; px <= ex; px += ox2) {
- unsigned short *p01 = px + ox1;
-
- if (w14)
- wenc14(*px, *p01, i00, *p01);
- else
- wenc16(*px, *p01, i00, *p01);
-
- *px = i00;
- }
- }
-
- //
- // Next level
- //
-
- p = p2;
- p2 <<= 1;
- }
- }
-
- //
- // 2D Wavelet decoding:
- //
-
- static void wav2Decode(
- unsigned short *in, // io: values are transformed in place
- int nx, // i : x size
- int ox, // i : x offset
- int ny, // i : y size
- int oy, // i : y offset
- unsigned short mx) // i : maximum in[x][y] value
- {
- bool w14 = (mx < (1 << 14));
- int n = (nx > ny) ? ny : nx;
- int p = 1;
- int p2;
-
- //
- // Search max level
- //
-
- while (p <= n) p <<= 1;
-
- p >>= 1;
- p2 = p;
- p >>= 1;
-
- //
- // Hierarchical loop on smaller dimension n
- //
-
- while (p >= 1) {
- unsigned short *py = in;
- unsigned short *ey = in + oy * (ny - p2);
- int oy1 = oy * p;
- int oy2 = oy * p2;
- int ox1 = ox * p;
- int ox2 = ox * p2;
- unsigned short i00, i01, i10, i11;
-
- //
- // Y loop
- //
-
- for (; py <= ey; py += oy2) {
- unsigned short *px = py;
- unsigned short *ex = py + ox * (nx - p2);
-
- //
- // X loop
- //
-
- for (; px <= ex; px += ox2) {
- unsigned short *p01 = px + ox1;
- unsigned short *p10 = px + oy1;
- unsigned short *p11 = p10 + ox1;
-
- //
- // 2D wavelet decoding
- //
-
- if (w14) {
- wdec14(*px, *p10, i00, i10);
- wdec14(*p01, *p11, i01, i11);
- wdec14(i00, i01, *px, *p01);
- wdec14(i10, i11, *p10, *p11);
- } else {
- wdec16(*px, *p10, i00, i10);
- wdec16(*p01, *p11, i01, i11);
- wdec16(i00, i01, *px, *p01);
- wdec16(i10, i11, *p10, *p11);
- }
- }
-
- //
- // Decode (1D) odd column (still in Y loop)
- //
-
- if (nx & p) {
- unsigned short *p10 = px + oy1;
-
- if (w14)
- wdec14(*px, *p10, i00, *p10);
- else
- wdec16(*px, *p10, i00, *p10);
-
- *px = i00;
- }
- }
-
- //
- // Decode (1D) odd line (must loop in X)
- //
-
- if (ny & p) {
- unsigned short *px = py;
- unsigned short *ex = py + ox * (nx - p2);
-
- for (; px <= ex; px += ox2) {
- unsigned short *p01 = px + ox1;
-
- if (w14)
- wdec14(*px, *p01, i00, *p01);
- else
- wdec16(*px, *p01, i00, *p01);
-
- *px = i00;
- }
- }
-
- //
- // Next level
- //
-
- p2 = p;
- p >>= 1;
- }
- }
-
- //-----------------------------------------------------------------------------
- //
- // 16-bit Huffman compression and decompression.
- //
- // The source code in this file is derived from the 8-bit
- // Huffman compression and decompression routines written
- // by Christian Rouet for his PIZ image file format.
- //
- //-----------------------------------------------------------------------------
-
- // Adds some modification for tinyexr.
-
- const int HUF_ENCBITS = 16; // literal (value) bit length
- const int HUF_DECBITS = 14; // decoding bit size (>= 8)
-
- const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
- const int HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
- const int HUF_DECMASK = HUF_DECSIZE - 1;
-
- struct HufDec { // short code long code
- //-------------------------------
- unsigned int len : 8; // code length 0
- unsigned int lit : 24; // lit p size
- unsigned int *p; // 0 lits
- };
-
- inline long long hufLength(long long code) { return code & 63; }
-
- inline long long hufCode(long long code) { return code >> 6; }
-
- inline void outputBits(int nBits, long long bits, long long &c, int &lc,
- char *&out) {
- c <<= nBits;
- lc += nBits;
-
- c |= bits;
-
- while (lc >= 8) *out++ = static_cast<char>((c >> (lc -= 8)));
- }
-
- inline long long getBits(int nBits, long long &c, int &lc, const char *&in) {
- while (lc < nBits) {
- c = (c << 8) | *(reinterpret_cast<const unsigned char *>(in++));
- lc += 8;
- }
-
- lc -= nBits;
- return (c >> lc) & ((1 << nBits) - 1);
- }
-
- //
- // ENCODING TABLE BUILDING & (UN)PACKING
- //
-
- //
- // Build a "canonical" Huffman code table:
- // - for each (uncompressed) symbol, hcode contains the length
- // of the corresponding code (in the compressed data)
- // - canonical codes are computed and stored in hcode
- // - the rules for constructing canonical codes are as follows:
- // * shorter codes (if filled with zeroes to the right)
- // have a numerically higher value than longer codes
- // * for codes with the same length, numerical values
- // increase with numerical symbol values
- // - because the canonical code table can be constructed from
- // symbol lengths alone, the code table can be transmitted
- // without sending the actual code values
- // - see http://www.compressconsult.com/huffman/
- //
-
- static void hufCanonicalCodeTable(long long hcode[HUF_ENCSIZE]) {
- long long n[59];
-
- //
- // For each i from 0 through 58, count the
- // number of different codes of length i, and
- // store the count in n[i].
- //
-
- for (int i = 0; i <= 58; ++i) n[i] = 0;
-
- for (int i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1;
-
- //
- // For each i from 58 through 1, compute the
- // numerically lowest code with length i, and
- // store that code in n[i].
- //
-
- long long c = 0;
-
- for (int i = 58; i > 0; --i) {
- long long nc = ((c + n[i]) >> 1);
- n[i] = c;
- c = nc;
- }
-
- //
- // hcode[i] contains the length, l, of the
- // code for symbol i. Assign the next available
- // code of length l to the symbol and store both
- // l and the code in hcode[i].
- //
-
- for (int i = 0; i < HUF_ENCSIZE; ++i) {
- int l = static_cast<int>(hcode[i]);
-
- if (l > 0) hcode[i] = l | (n[l]++ << 6);
- }
- }
-
- //
- // Compute Huffman codes (based on frq input) and store them in frq:
- // - code structure is : [63:lsb - 6:msb] | [5-0: bit length];
- // - max code length is 58 bits;
- // - codes outside the range [im-iM] have a null length (unused values);
- // - original frequencies are destroyed;
- // - encoding tables are used by hufEncode() and hufBuildDecTable();
- //
-
- struct FHeapCompare {
- bool operator()(long long *a, long long *b) { return *a > *b; }
- };
-
- static void hufBuildEncTable(
- long long *frq, // io: input frequencies [HUF_ENCSIZE], output table
- int *im, // o: min frq index
- int *iM) // o: max frq index
- {
- //
- // This function assumes that when it is called, array frq
- // indicates the frequency of all possible symbols in the data
- // that are to be Huffman-encoded. (frq[i] contains the number
- // of occurrences of symbol i in the data.)
- //
- // The loop below does three things:
- //
- // 1) Finds the minimum and maximum indices that point
- // to non-zero entries in frq:
- //
- // frq[im] != 0, and frq[i] == 0 for all i < im
- // frq[iM] != 0, and frq[i] == 0 for all i > iM
- //
- // 2) Fills array fHeap with pointers to all non-zero
- // entries in frq.
- //
- // 3) Initializes array hlink such that hlink[i] == i
- // for all array entries.
- //
-
- std::vector<int> hlink(HUF_ENCSIZE);
- std::vector<long long *> fHeap(HUF_ENCSIZE);
-
- *im = 0;
-
- while (!frq[*im]) (*im)++;
-
- int nf = 0;
-
- for (int i = *im; i < HUF_ENCSIZE; i++) {
- hlink[i] = i;
-
- if (frq[i]) {
- fHeap[nf] = &frq[i];
- nf++;
- *iM = i;
- }
- }
-
- //
- // Add a pseudo-symbol, with a frequency count of 1, to frq;
- // adjust the fHeap and hlink array accordingly. Function
- // hufEncode() uses the pseudo-symbol for run-length encoding.
- //
-
- (*iM)++;
- frq[*iM] = 1;
- fHeap[nf] = &frq[*iM];
- nf++;
-
- //
- // Build an array, scode, such that scode[i] contains the number
- // of bits assigned to symbol i. Conceptually this is done by
- // constructing a tree whose leaves are the symbols with non-zero
- // frequency:
- //
- // Make a heap that contains all symbols with a non-zero frequency,
- // with the least frequent symbol on top.
- //
- // Repeat until only one symbol is left on the heap:
- //
- // Take the two least frequent symbols off the top of the heap.
- // Create a new node that has first two nodes as children, and
- // whose frequency is the sum of the frequencies of the first
- // two nodes. Put the new node back into the heap.
- //
- // The last node left on the heap is the root of the tree. For each
- // leaf node, the distance between the root and the leaf is the length
- // of the code for the corresponding symbol.
- //
- // The loop below doesn't actually build the tree; instead we compute
- // the distances of the leaves from the root on the fly. When a new
- // node is added to the heap, then that node's descendants are linked
- // into a single linear list that starts at the new node, and the code
- // lengths of the descendants (that is, their distance from the root
- // of the tree) are incremented by one.
- //
-
- std::make_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
-
- std::vector<long long> scode(HUF_ENCSIZE);
- memset(scode.data(), 0, sizeof(long long) * HUF_ENCSIZE);
-
- while (nf > 1) {
- //
- // Find the indices, mm and m, of the two smallest non-zero frq
- // values in fHeap, add the smallest frq to the second-smallest
- // frq, and remove the smallest frq value from fHeap.
- //
-
- int mm = fHeap[0] - frq;
- std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
- --nf;
-
- int m = fHeap[0] - frq;
- std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
-
- frq[m] += frq[mm];
- std::push_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
-
- //
- // The entries in scode are linked into lists with the
- // entries in hlink serving as "next" pointers and with
- // the end of a list marked by hlink[j] == j.
- //
- // Traverse the lists that start at scode[m] and scode[mm].
- // For each element visited, increment the length of the
- // corresponding code by one bit. (If we visit scode[j]
- // during the traversal, then the code for symbol j becomes
- // one bit longer.)
- //
- // Merge the lists that start at scode[m] and scode[mm]
- // into a single list that starts at scode[m].
- //
-
- //
- // Add a bit to all codes in the first list.
- //
-
- for (int j = m;; j = hlink[j]) {
- scode[j]++;
-
- assert(scode[j] <= 58);
-
- if (hlink[j] == j) {
- //
- // Merge the two lists.
- //
-
- hlink[j] = mm;
- break;
- }
- }
-
- //
- // Add a bit to all codes in the second list
- //
-
- for (int j = mm;; j = hlink[j]) {
- scode[j]++;
-
- assert(scode[j] <= 58);
-
- if (hlink[j] == j) break;
- }
- }
-
- //
- // Build a canonical Huffman code table, replacing the code
- // lengths in scode with (code, code length) pairs. Copy the
- // code table from scode into frq.
- //
-
- hufCanonicalCodeTable(scode.data());
- memcpy(frq, scode.data(), sizeof(long long) * HUF_ENCSIZE);
- }
-
- //
- // Pack an encoding table:
- // - only code lengths, not actual codes, are stored
- // - runs of zeroes are compressed as follows:
- //
- // unpacked packed
- // --------------------------------
- // 1 zero 0 (6 bits)
- // 2 zeroes 59
- // 3 zeroes 60
- // 4 zeroes 61
- // 5 zeroes 62
- // n zeroes (6 or more) 63 n-6 (6 + 8 bits)
- //
-
- const int SHORT_ZEROCODE_RUN = 59;
- const int LONG_ZEROCODE_RUN = 63;
- const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
- const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
-
- static void hufPackEncTable(
- const long long *hcode, // i : encoding table [HUF_ENCSIZE]
- int im, // i : min hcode index
- int iM, // i : max hcode index
- char **pcode) // o: ptr to packed table (updated)
- {
- char *p = *pcode;
- long long c = 0;
- int lc = 0;
-
- for (; im <= iM; im++) {
- int l = hufLength(hcode[im]);
-
- if (l == 0) {
- int zerun = 1;
-
- while ((im < iM) && (zerun < LONGEST_LONG_RUN)) {
- if (hufLength(hcode[im + 1]) > 0) break;
- im++;
- zerun++;
- }
-
- if (zerun >= 2) {
- if (zerun >= SHORTEST_LONG_RUN) {
- outputBits(6, LONG_ZEROCODE_RUN, c, lc, p);
- outputBits(8, zerun - SHORTEST_LONG_RUN, c, lc, p);
- } else {
- outputBits(6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);
- }
- continue;
- }
- }
-
- outputBits(6, l, c, lc, p);
- }
-
- if (lc > 0) *p++ = (unsigned char)(c << (8 - lc));
-
- *pcode = p;
- }
-
- //
- // Unpack an encoding table packed by hufPackEncTable():
- //
-
- static bool hufUnpackEncTable(
- const char **pcode, // io: ptr to packed table (updated)
- int ni, // i : input size (in bytes)
- int im, // i : min hcode index
- int iM, // i : max hcode index
- long long *hcode) // o: encoding table [HUF_ENCSIZE]
- {
- memset(hcode, 0, sizeof(long long) * HUF_ENCSIZE);
-
- const char *p = *pcode;
- long long c = 0;
- int lc = 0;
-
- for (; im <= iM; im++) {
- if (p - *pcode >= ni) {
- return false;
- }
-
- long long l = hcode[im] = getBits(6, c, lc, p); // code length
-
- if (l == (long long)LONG_ZEROCODE_RUN) {
- if (p - *pcode > ni) {
- return false;
- }
-
- int zerun = getBits(8, c, lc, p) + SHORTEST_LONG_RUN;
-
- if (im + zerun > iM + 1) {
- return false;
- }
-
- while (zerun--) hcode[im++] = 0;
-
- im--;
- } else if (l >= (long long)SHORT_ZEROCODE_RUN) {
- int zerun = l - SHORT_ZEROCODE_RUN + 2;
-
- if (im + zerun > iM + 1) {
- return false;
- }
-
- while (zerun--) hcode[im++] = 0;
-
- im--;
- }
- }
-
- *pcode = const_cast<char *>(p);
-
- hufCanonicalCodeTable(hcode);
-
- return true;
- }
-
- //
- // DECODING TABLE BUILDING
- //
-
- //
- // Clear a newly allocated decoding table so that it contains only zeroes.
- //
-
- static void hufClearDecTable(HufDec *hdecod) // io: (allocated by caller)
- // decoding table [HUF_DECSIZE]
- {
- for (int i = 0; i < HUF_DECSIZE; i++) {
- hdecod[i].len = 0;
- hdecod[i].lit = 0;
- hdecod[i].p = NULL;
- }
- // memset(hdecod, 0, sizeof(HufDec) * HUF_DECSIZE);
- }
-
- //
- // Build a decoding hash table based on the encoding table hcode:
- // - short codes (<= HUF_DECBITS) are resolved with a single table access;
- // - long code entry allocations are not optimized, because long codes are
- // unfrequent;
- // - decoding tables are used by hufDecode();
- //
-
- static bool hufBuildDecTable(const long long *hcode, // i : encoding table
- int im, // i : min index in hcode
- int iM, // i : max index in hcode
- HufDec *hdecod) // o: (allocated by caller)
- // decoding table [HUF_DECSIZE]
- {
- //
- // Init hashtable & loop on all codes.
- // Assumes that hufClearDecTable(hdecod) has already been called.
- //
-
- for (; im <= iM; im++) {
- long long c = hufCode(hcode[im]);
- int l = hufLength(hcode[im]);
-
- if (c >> l) {
- //
- // Error: c is supposed to be an l-bit code,
- // but c contains a value that is greater
- // than the largest l-bit number.
- //
-
- // invalidTableEntry();
- return false;
- }
-
- if (l > HUF_DECBITS) {
- //
- // Long code: add a secondary entry
- //
-
- HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
-
- if (pl->len) {
- //
- // Error: a short code has already
- // been stored in table entry *pl.
- //
-
- // invalidTableEntry();
- return false;
- }
-
- pl->lit++;
-
- if (pl->p) {
- unsigned int *p = pl->p;
- pl->p = new unsigned int[pl->lit];
-
- for (int i = 0; i < pl->lit - 1; ++i) pl->p[i] = p[i];
-
- delete[] p;
- } else {
- pl->p = new unsigned int[1];
- }
-
- pl->p[pl->lit - 1] = im;
- } else if (l) {
- //
- // Short code: init all primary entries
- //
-
- HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
-
- for (long long i = 1ULL << (HUF_DECBITS - l); i > 0; i--, pl++) {
- if (pl->len || pl->p) {
- //
- // Error: a short code or a long code has
- // already been stored in table entry *pl.
- //
-
- // invalidTableEntry();
- return false;
- }
-
- pl->len = l;
- pl->lit = im;
- }
- }
- }
-
- return true;
- }
-
- //
- // Free the long code entries of a decoding table built by hufBuildDecTable()
- //
-
- static void hufFreeDecTable(HufDec *hdecod) // io: Decoding table
- {
- for (int i = 0; i < HUF_DECSIZE; i++) {
- if (hdecod[i].p) {
- delete[] hdecod[i].p;
- hdecod[i].p = 0;
- }
- }
- }
-
- //
- // ENCODING
- //
-
- inline void outputCode(long long code, long long &c, int &lc, char *&out) {
- outputBits(hufLength(code), hufCode(code), c, lc, out);
- }
-
- inline void sendCode(long long sCode, int runCount, long long runCode,
- long long &c, int &lc, char *&out) {
- //
- // Output a run of runCount instances of the symbol sCount.
- // Output the symbols explicitly, or if that is shorter, output
- // the sCode symbol once followed by a runCode symbol and runCount
- // expressed as an 8-bit number.
- //
-
- if (hufLength(sCode) + hufLength(runCode) + 8 < hufLength(sCode) * runCount) {
- outputCode(sCode, c, lc, out);
- outputCode(runCode, c, lc, out);
- outputBits(8, runCount, c, lc, out);
- } else {
- while (runCount-- >= 0) outputCode(sCode, c, lc, out);
- }
- }
-
- //
- // Encode (compress) ni values based on the Huffman encoding table hcode:
- //
-
- static int hufEncode // return: output size (in bits)
- (const long long *hcode, // i : encoding table
- const unsigned short *in, // i : uncompressed input buffer
- const int ni, // i : input buffer size (in bytes)
- int rlc, // i : rl code
- char *out) // o: compressed output buffer
- {
- char *outStart = out;
- long long c = 0; // bits not yet written to out
- int lc = 0; // number of valid bits in c (LSB)
- int s = in[0];
- int cs = 0;
-
- //
- // Loop on input values
- //
-
- for (int i = 1; i < ni; i++) {
- //
- // Count same values or send code
- //
-
- if (s == in[i] && cs < 255) {
- cs++;
- } else {
- sendCode(hcode[s], cs, hcode[rlc], c, lc, out);
- cs = 0;
- }
-
- s = in[i];
- }
-
- //
- // Send remaining code
- //
-
- sendCode(hcode[s], cs, hcode[rlc], c, lc, out);
-
- if (lc) *out = (c << (8 - lc)) & 0xff;
-
- return (out - outStart) * 8 + lc;
- }
-
- //
- // DECODING
- //
-
- //
- // In order to force the compiler to inline them,
- // getChar() and getCode() are implemented as macros
- // instead of "inline" functions.
- //
-
- #define getChar(c, lc, in) \
- { \
- c = (c << 8) | *(unsigned char *)(in++); \
- lc += 8; \
- }
-
- #if 0
- #define getCode(po, rlc, c, lc, in, out, ob, oe) \
- { \
- if (po == rlc) { \
- if (lc < 8) getChar(c, lc, in); \
- \
- lc -= 8; \
- \
- unsigned char cs = (c >> lc); \
- \
- if (out + cs > oe) return false; \
- \
- /* TinyEXR issue 78 */ \
- unsigned short s = out[-1]; \
- \
- while (cs-- > 0) *out++ = s; \
- } else if (out < oe) { \
- *out++ = po; \
- } else { \
- return false; \
- } \
- }
- #else
- static bool getCode(int po, int rlc, long long &c, int &lc, const char *&in,
- const char *in_end, unsigned short *&out,
- const unsigned short *ob, const unsigned short *oe) {
- (void)ob;
- if (po == rlc) {
- if (lc < 8) {
- /* TinyEXR issue 78 */
- /* TinyEXR issue 160. in + 1 -> in */
- if (in >= in_end) {
- return false;
- }
-
- getChar(c, lc, in);
- }
-
- lc -= 8;
-
- unsigned char cs = (c >> lc);
-
- if (out + cs > oe) return false;
-
- // Bounds check for safety
- // Issue 100.
- if ((out - 1) < ob) return false;
- unsigned short s = out[-1];
-
- while (cs-- > 0) *out++ = s;
- } else if (out < oe) {
- *out++ = po;
- } else {
- return false;
- }
- return true;
- }
- #endif
-
- //
- // Decode (uncompress) ni bits based on encoding & decoding tables:
- //
-
- static bool hufDecode(const long long *hcode, // i : encoding table
- const HufDec *hdecod, // i : decoding table
- const char *in, // i : compressed input buffer
- int ni, // i : input size (in bits)
- int rlc, // i : run-length code
- int no, // i : expected output size (in bytes)
- unsigned short *out) // o: uncompressed output buffer
- {
- long long c = 0;
- int lc = 0;
- unsigned short *outb = out; // begin
- unsigned short *oe = out + no; // end
- const char *ie = in + (ni + 7) / 8; // input byte size
-
- //
- // Loop on input bytes
- //
-
- while (in < ie) {
- getChar(c, lc, in);
-
- //
- // Access decoding table
- //
-
- while (lc >= HUF_DECBITS) {
- const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
-
- if (pl.len) {
- //
- // Get short code
- //
-
- lc -= pl.len;
- // std::cout << "lit = " << pl.lit << std::endl;
- // std::cout << "rlc = " << rlc << std::endl;
- // std::cout << "c = " << c << std::endl;
- // std::cout << "lc = " << lc << std::endl;
- // std::cout << "in = " << in << std::endl;
- // std::cout << "out = " << out << std::endl;
- // std::cout << "oe = " << oe << std::endl;
- if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) {
- return false;
- }
- } else {
- if (!pl.p) {
- return false;
- }
- // invalidCode(); // wrong code
-
- //
- // Search long code
- //
-
- int j;
-
- for (j = 0; j < pl.lit; j++) {
- int l = hufLength(hcode[pl.p[j]]);
-
- while (lc < l && in < ie) // get more bits
- getChar(c, lc, in);
-
- if (lc >= l) {
- if (hufCode(hcode[pl.p[j]]) ==
- ((c >> (lc - l)) & (((long long)(1) << l) - 1))) {
- //
- // Found : get long code
- //
-
- lc -= l;
- if (!getCode(pl.p[j], rlc, c, lc, in, ie, out, outb, oe)) {
- return false;
- }
- break;
- }
- }
- }
-
- if (j == pl.lit) {
- return false;
- // invalidCode(); // Not found
- }
- }
- }
- }
-
- //
- // Get remaining (short) codes
- //
-
- int i = (8 - ni) & 7;
- c >>= i;
- lc -= i;
-
- while (lc > 0) {
- const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
-
- if (pl.len) {
- lc -= pl.len;
- if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) {
- return false;
- }
- } else {
- return false;
- // invalidCode(); // wrong (long) code
- }
- }
-
- if (out - outb != no) {
- return false;
- }
- // notEnoughData ();
-
- return true;
- }
-
- static void countFrequencies(std::vector<long long> &freq,
- const unsigned short data[/*n*/], int n) {
- for (int i = 0; i < HUF_ENCSIZE; ++i) freq[i] = 0;
-
- for (int i = 0; i < n; ++i) ++freq[data[i]];
- }
-
- static void writeUInt(char buf[4], unsigned int i) {
- unsigned char *b = (unsigned char *)buf;
-
- b[0] = i;
- b[1] = i >> 8;
- b[2] = i >> 16;
- b[3] = i >> 24;
- }
-
- static unsigned int readUInt(const char buf[4]) {
- const unsigned char *b = (const unsigned char *)buf;
-
- return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) |
- ((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000);
- }
-
- //
- // EXTERNAL INTERFACE
- //
-
- static int hufCompress(const unsigned short raw[], int nRaw,
- char compressed[]) {
- if (nRaw == 0) return 0;
-
- std::vector<long long> freq(HUF_ENCSIZE);
-
- countFrequencies(freq, raw, nRaw);
-
- int im = 0;
- int iM = 0;
- hufBuildEncTable(freq.data(), &im, &iM);
-
- char *tableStart = compressed + 20;
- char *tableEnd = tableStart;
- hufPackEncTable(freq.data(), im, iM, &tableEnd);
- int tableLength = tableEnd - tableStart;
-
- char *dataStart = tableEnd;
- int nBits = hufEncode(freq.data(), raw, nRaw, iM, dataStart);
- int data_length = (nBits + 7) / 8;
-
- writeUInt(compressed, im);
- writeUInt(compressed + 4, iM);
- writeUInt(compressed + 8, tableLength);
- writeUInt(compressed + 12, nBits);
- writeUInt(compressed + 16, 0); // room for future extensions
-
- return dataStart + data_length - compressed;
- }
-
- static bool hufUncompress(const char compressed[], int nCompressed,
- std::vector<unsigned short> *raw) {
- if (nCompressed == 0) {
- if (raw->size() != 0) return false;
-
- return false;
- }
-
- int im = readUInt(compressed);
- int iM = readUInt(compressed + 4);
- // int tableLength = readUInt (compressed + 8);
- int nBits = readUInt(compressed + 12);
-
- if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return false;
-
- const char *ptr = compressed + 20;
-
- //
- // Fast decoder needs at least 2x64-bits of compressed data, and
- // needs to be run-able on this platform. Otherwise, fall back
- // to the original decoder
- //
-
- // if (FastHufDecoder::enabled() && nBits > 128)
- //{
- // FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM);
- // fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw);
- //}
- // else
- {
- std::vector<long long> freq(HUF_ENCSIZE);
- std::vector<HufDec> hdec(HUF_DECSIZE);
-
- hufClearDecTable(&hdec.at(0));
-
- hufUnpackEncTable(&ptr, nCompressed - (ptr - compressed), im, iM,
- &freq.at(0));
-
- {
- if (nBits > 8 * (nCompressed - (ptr - compressed))) {
- return false;
- }
-
- hufBuildDecTable(&freq.at(0), im, iM, &hdec.at(0));
- hufDecode(&freq.at(0), &hdec.at(0), ptr, nBits, iM, raw->size(),
- raw->data());
- }
- // catch (...)
- //{
- // hufFreeDecTable (hdec);
- // throw;
- //}
-
- hufFreeDecTable(&hdec.at(0));
- }
-
- return true;
- }
-
- //
- // Functions to compress the range of values in the pixel data
- //
-
- const int USHORT_RANGE = (1 << 16);
- const int BITMAP_SIZE = (USHORT_RANGE >> 3);
-
- static void bitmapFromData(const unsigned short data[/*nData*/], int nData,
- unsigned char bitmap[BITMAP_SIZE],
- unsigned short &minNonZero,
- unsigned short &maxNonZero) {
- for (int i = 0; i < BITMAP_SIZE; ++i) bitmap[i] = 0;
-
- for (int i = 0; i < nData; ++i) bitmap[data[i] >> 3] |= (1 << (data[i] & 7));
-
- bitmap[0] &= ~1; // zero is not explicitly stored in
- // the bitmap; we assume that the
- // data always contain zeroes
- minNonZero = BITMAP_SIZE - 1;
- maxNonZero = 0;
-
- for (int i = 0; i < BITMAP_SIZE; ++i) {
- if (bitmap[i]) {
- if (minNonZero > i) minNonZero = i;
- if (maxNonZero < i) maxNonZero = i;
- }
- }
- }
-
- static unsigned short forwardLutFromBitmap(
- const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) {
- int k = 0;
-
- for (int i = 0; i < USHORT_RANGE; ++i) {
- if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
- lut[i] = k++;
- else
- lut[i] = 0;
- }
-
- return k - 1; // maximum value stored in lut[],
- } // i.e. number of ones in bitmap minus 1
-
- static unsigned short reverseLutFromBitmap(
- const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) {
- int k = 0;
-
- for (int i = 0; i < USHORT_RANGE; ++i) {
- if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i;
- }
-
- int n = k - 1;
-
- while (k < USHORT_RANGE) lut[k++] = 0;
-
- return n; // maximum k where lut[k] is non-zero,
- } // i.e. number of ones in bitmap minus 1
-
- static void applyLut(const unsigned short lut[USHORT_RANGE],
- unsigned short data[/*nData*/], int nData) {
- for (int i = 0; i < nData; ++i) data[i] = lut[data[i]];
- }
-
- #ifdef __clang__
- #pragma clang diagnostic pop
- #endif // __clang__
-
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
-
- static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize,
- const unsigned char *inPtr, size_t inSize,
- const std::vector<ChannelInfo> &channelInfo,
- int data_width, int num_lines) {
- std::vector<unsigned char> bitmap(BITMAP_SIZE);
- unsigned short minNonZero;
- unsigned short maxNonZero;
-
- #if !TINYEXR_LITTLE_ENDIAN
- // @todo { PIZ compression on BigEndian architecture. }
- assert(0);
- return false;
- #endif
-
- // Assume `inSize` is multiple of 2 or 4.
- std::vector<unsigned short> tmpBuffer(inSize / sizeof(unsigned short));
-
- std::vector<PIZChannelData> channelData(channelInfo.size());
- unsigned short *tmpBufferEnd = &tmpBuffer.at(0);
-
- for (size_t c = 0; c < channelData.size(); c++) {
- PIZChannelData &cd = channelData[c];
-
- cd.start = tmpBufferEnd;
- cd.end = cd.start;
-
- cd.nx = data_width;
- cd.ny = num_lines;
- // cd.ys = c.channel().ySampling;
-
- size_t pixelSize = sizeof(int); // UINT and FLOAT
- if (channelInfo[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
- pixelSize = sizeof(short);
- }
-
- cd.size = static_cast<int>(pixelSize / sizeof(short));
-
- tmpBufferEnd += cd.nx * cd.ny * cd.size;
- }
-
- const unsigned char *ptr = inPtr;
- for (int y = 0; y < num_lines; ++y) {
- for (size_t i = 0; i < channelData.size(); ++i) {
- PIZChannelData &cd = channelData[i];
-
- // if (modp (y, cd.ys) != 0)
- // continue;
-
- size_t n = static_cast<size_t>(cd.nx * cd.size);
- memcpy(cd.end, ptr, n * sizeof(unsigned short));
- ptr += n * sizeof(unsigned short);
- cd.end += n;
- }
- }
-
- bitmapFromData(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()),
- bitmap.data(), minNonZero, maxNonZero);
-
- std::vector<unsigned short> lut(USHORT_RANGE);
- unsigned short maxValue = forwardLutFromBitmap(bitmap.data(), lut.data());
- applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()));
-
- //
- // Store range compression info in _outBuffer
- //
-
- char *buf = reinterpret_cast<char *>(outPtr);
-
- memcpy(buf, &minNonZero, sizeof(unsigned short));
- buf += sizeof(unsigned short);
- memcpy(buf, &maxNonZero, sizeof(unsigned short));
- buf += sizeof(unsigned short);
-
- if (minNonZero <= maxNonZero) {
- memcpy(buf, reinterpret_cast<char *>(&bitmap[0] + minNonZero),
- maxNonZero - minNonZero + 1);
- buf += maxNonZero - minNonZero + 1;
- }
-
- //
- // Apply wavelet encoding
- //
-
- for (size_t i = 0; i < channelData.size(); ++i) {
- PIZChannelData &cd = channelData[i];
-
- for (int j = 0; j < cd.size; ++j) {
- wav2Encode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size,
- maxValue);
- }
- }
-
- //
- // Apply Huffman encoding; append the result to _outBuffer
- //
-
- // length header(4byte), then huff data. Initialize length header with zero,
- // then later fill it by `length`.
- char *lengthPtr = buf;
- int zero = 0;
- memcpy(buf, &zero, sizeof(int));
- buf += sizeof(int);
-
- int length =
- hufCompress(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), buf);
- memcpy(lengthPtr, &length, sizeof(int));
-
- (*outSize) = static_cast<unsigned int>(
- (reinterpret_cast<unsigned char *>(buf) - outPtr) +
- static_cast<unsigned int>(length));
-
- // Use uncompressed data when compressed data is larger than uncompressed.
- // (Issue 40)
- if ((*outSize) >= inSize) {
- (*outSize) = static_cast<unsigned int>(inSize);
- memcpy(outPtr, inPtr, inSize);
- }
- return true;
- }
-
- static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr,
- size_t tmpBufSizeInBytes, size_t inLen, int num_channels,
- const EXRChannelInfo *channels, int data_width,
- int num_lines) {
- if (inLen == tmpBufSizeInBytes) {
- // Data is not compressed(Issue 40).
- memcpy(outPtr, inPtr, inLen);
- return true;
- }
-
- std::vector<unsigned char> bitmap(BITMAP_SIZE);
- unsigned short minNonZero;
- unsigned short maxNonZero;
-
- #if !TINYEXR_LITTLE_ENDIAN
- // @todo { PIZ compression on BigEndian architecture. }
- assert(0);
- return false;
- #endif
-
- memset(bitmap.data(), 0, BITMAP_SIZE);
-
- const unsigned char *ptr = inPtr;
- // minNonZero = *(reinterpret_cast<const unsigned short *>(ptr));
- tinyexr::cpy2(&minNonZero, reinterpret_cast<const unsigned short *>(ptr));
- // maxNonZero = *(reinterpret_cast<const unsigned short *>(ptr + 2));
- tinyexr::cpy2(&maxNonZero, reinterpret_cast<const unsigned short *>(ptr + 2));
- ptr += 4;
-
- if (maxNonZero >= BITMAP_SIZE) {
- return false;
- }
-
- if (minNonZero <= maxNonZero) {
- memcpy(reinterpret_cast<char *>(&bitmap[0] + minNonZero), ptr,
- maxNonZero - minNonZero + 1);
- ptr += maxNonZero - minNonZero + 1;
- }
-
- std::vector<unsigned short> lut(USHORT_RANGE);
- memset(lut.data(), 0, sizeof(unsigned short) * USHORT_RANGE);
- unsigned short maxValue = reverseLutFromBitmap(bitmap.data(), lut.data());
-
- //
- // Huffman decoding
- //
-
- int length;
-
- // length = *(reinterpret_cast<const int *>(ptr));
- tinyexr::cpy4(&length, reinterpret_cast<const int *>(ptr));
- ptr += sizeof(int);
-
- if (size_t((ptr - inPtr) + length) > inLen) {
- return false;
- }
-
- std::vector<unsigned short> tmpBuffer(tmpBufSizeInBytes / sizeof(unsigned short));
- hufUncompress(reinterpret_cast<const char *>(ptr), length, &tmpBuffer);
-
- //
- // Wavelet decoding
- //
-
- std::vector<PIZChannelData> channelData(static_cast<size_t>(num_channels));
-
- unsigned short *tmpBufferEnd = &tmpBuffer.at(0);
-
- for (size_t i = 0; i < static_cast<size_t>(num_channels); ++i) {
- const EXRChannelInfo &chan = channels[i];
-
- size_t pixelSize = sizeof(int); // UINT and FLOAT
- if (chan.pixel_type == TINYEXR_PIXELTYPE_HALF) {
- pixelSize = sizeof(short);
- }
-
- channelData[i].start = tmpBufferEnd;
- channelData[i].end = channelData[i].start;
- channelData[i].nx = data_width;
- channelData[i].ny = num_lines;
- // channelData[i].ys = 1;
- channelData[i].size = static_cast<int>(pixelSize / sizeof(short));
-
- tmpBufferEnd += channelData[i].nx * channelData[i].ny * channelData[i].size;
- }
-
- for (size_t i = 0; i < channelData.size(); ++i) {
- PIZChannelData &cd = channelData[i];
-
- for (int j = 0; j < cd.size; ++j) {
- wav2Decode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size,
- maxValue);
- }
- }
-
- //
- // Expand the pixel data to their original range
- //
-
- applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBufSizeInBytes / sizeof(unsigned short)));
-
- for (int y = 0; y < num_lines; y++) {
- for (size_t i = 0; i < channelData.size(); ++i) {
- PIZChannelData &cd = channelData[i];
-
- // if (modp (y, cd.ys) != 0)
- // continue;
-
- size_t n = static_cast<size_t>(cd.nx * cd.size);
- memcpy(outPtr, cd.end, static_cast<size_t>(n * sizeof(unsigned short)));
- outPtr += n * sizeof(unsigned short);
- cd.end += n;
- }
- }
-
- return true;
- }
- #endif // TINYEXR_USE_PIZ
-
- #if TINYEXR_USE_ZFP
-
- struct ZFPCompressionParam {
- double rate;
- unsigned int precision;
- unsigned int __pad0;
- double tolerance;
- int type; // TINYEXR_ZFP_COMPRESSIONTYPE_*
- unsigned int __pad1;
-
- ZFPCompressionParam() {
- type = TINYEXR_ZFP_COMPRESSIONTYPE_RATE;
- rate = 2.0;
- precision = 0;
- tolerance = 0.0;
- }
- };
-
- static bool FindZFPCompressionParam(ZFPCompressionParam *param,
- const EXRAttribute *attributes,
- int num_attributes, std::string *err) {
- bool foundType = false;
-
- for (int i = 0; i < num_attributes; i++) {
- if ((strcmp(attributes[i].name, "zfpCompressionType") == 0)) {
- if (attributes[i].size == 1) {
- param->type = static_cast<int>(attributes[i].value[0]);
- foundType = true;
- break;
- } else {
- if (err) {
- (*err) +=
- "zfpCompressionType attribute must be uchar(1 byte) type.\n";
- }
- return false;
- }
- }
- }
-
- if (!foundType) {
- if (err) {
- (*err) += "`zfpCompressionType` attribute not found.\n";
- }
- return false;
- }
-
- if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
- for (int i = 0; i < num_attributes; i++) {
- if ((strcmp(attributes[i].name, "zfpCompressionRate") == 0) &&
- (attributes[i].size == 8)) {
- param->rate = *(reinterpret_cast<double *>(attributes[i].value));
- return true;
- }
- }
-
- if (err) {
- (*err) += "`zfpCompressionRate` attribute not found.\n";
- }
-
- } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
- for (int i = 0; i < num_attributes; i++) {
- if ((strcmp(attributes[i].name, "zfpCompressionPrecision") == 0) &&
- (attributes[i].size == 4)) {
- param->rate = *(reinterpret_cast<int *>(attributes[i].value));
- return true;
- }
- }
-
- if (err) {
- (*err) += "`zfpCompressionPrecision` attribute not found.\n";
- }
-
- } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
- for (int i = 0; i < num_attributes; i++) {
- if ((strcmp(attributes[i].name, "zfpCompressionTolerance") == 0) &&
- (attributes[i].size == 8)) {
- param->tolerance = *(reinterpret_cast<double *>(attributes[i].value));
- return true;
- }
- }
-
- if (err) {
- (*err) += "`zfpCompressionTolerance` attribute not found.\n";
- }
- } else {
- if (err) {
- (*err) += "Unknown value specified for `zfpCompressionType`.\n";
- }
- }
-
- return false;
- }
-
- // Assume pixel format is FLOAT for all channels.
- static bool DecompressZfp(float *dst, int dst_width, int dst_num_lines,
- size_t num_channels, const unsigned char *src,
- unsigned long src_size,
- const ZFPCompressionParam ¶m) {
- size_t uncompressed_size =
- size_t(dst_width) * size_t(dst_num_lines) * num_channels;
-
- if (uncompressed_size == src_size) {
- // Data is not compressed(Issue 40).
- memcpy(dst, src, src_size);
- }
-
- zfp_stream *zfp = NULL;
- zfp_field *field = NULL;
-
- assert((dst_width % 4) == 0);
- assert((dst_num_lines % 4) == 0);
-
- if ((size_t(dst_width) & 3U) || (size_t(dst_num_lines) & 3U)) {
- return false;
- }
-
- field =
- zfp_field_2d(reinterpret_cast<void *>(const_cast<unsigned char *>(src)),
- zfp_type_float, static_cast<unsigned int>(dst_width),
- static_cast<unsigned int>(dst_num_lines) *
- static_cast<unsigned int>(num_channels));
- zfp = zfp_stream_open(NULL);
-
- if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
- zfp_stream_set_rate(zfp, param.rate, zfp_type_float, /* dimension */ 2,
- /* write random access */ 0);
- } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
- zfp_stream_set_precision(zfp, param.precision);
- } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
- zfp_stream_set_accuracy(zfp, param.tolerance);
- } else {
- assert(0);
- }
-
- size_t buf_size = zfp_stream_maximum_size(zfp, field);
- std::vector<unsigned char> buf(buf_size);
- memcpy(&buf.at(0), src, src_size);
-
- bitstream *stream = stream_open(&buf.at(0), buf_size);
- zfp_stream_set_bit_stream(zfp, stream);
- zfp_stream_rewind(zfp);
-
- size_t image_size = size_t(dst_width) * size_t(dst_num_lines);
-
- for (size_t c = 0; c < size_t(num_channels); c++) {
- // decompress 4x4 pixel block.
- for (size_t y = 0; y < size_t(dst_num_lines); y += 4) {
- for (size_t x = 0; x < size_t(dst_width); x += 4) {
- float fblock[16];
- zfp_decode_block_float_2(zfp, fblock);
- for (size_t j = 0; j < 4; j++) {
- for (size_t i = 0; i < 4; i++) {
- dst[c * image_size + ((y + j) * size_t(dst_width) + (x + i))] =
- fblock[j * 4 + i];
- }
- }
- }
- }
- }
-
- zfp_field_free(field);
- zfp_stream_close(zfp);
- stream_close(stream);
-
- return true;
- }
-
- // Assume pixel format is FLOAT for all channels.
- static bool CompressZfp(std::vector<unsigned char> *outBuf,
- unsigned int *outSize, const float *inPtr, int width,
- int num_lines, int num_channels,
- const ZFPCompressionParam ¶m) {
- zfp_stream *zfp = NULL;
- zfp_field *field = NULL;
-
- assert((width % 4) == 0);
- assert((num_lines % 4) == 0);
-
- if ((size_t(width) & 3U) || (size_t(num_lines) & 3U)) {
- return false;
- }
-
- // create input array.
- field = zfp_field_2d(reinterpret_cast<void *>(const_cast<float *>(inPtr)),
- zfp_type_float, static_cast<unsigned int>(width),
- static_cast<unsigned int>(num_lines * num_channels));
-
- zfp = zfp_stream_open(NULL);
-
- if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
- zfp_stream_set_rate(zfp, param.rate, zfp_type_float, 2, 0);
- } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
- zfp_stream_set_precision(zfp, param.precision);
- } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
- zfp_stream_set_accuracy(zfp, param.tolerance);
- } else {
- assert(0);
- }
-
- size_t buf_size = zfp_stream_maximum_size(zfp, field);
-
- outBuf->resize(buf_size);
-
- bitstream *stream = stream_open(&outBuf->at(0), buf_size);
- zfp_stream_set_bit_stream(zfp, stream);
- zfp_field_free(field);
-
- size_t image_size = size_t(width) * size_t(num_lines);
-
- for (size_t c = 0; c < size_t(num_channels); c++) {
- // compress 4x4 pixel block.
- for (size_t y = 0; y < size_t(num_lines); y += 4) {
- for (size_t x = 0; x < size_t(width); x += 4) {
- float fblock[16];
- for (size_t j = 0; j < 4; j++) {
- for (size_t i = 0; i < 4; i++) {
- fblock[j * 4 + i] =
- inPtr[c * image_size + ((y + j) * size_t(width) + (x + i))];
- }
- }
- zfp_encode_block_float_2(zfp, fblock);
- }
- }
- }
-
- zfp_stream_flush(zfp);
- (*outSize) = static_cast<unsigned int>(zfp_stream_compressed_size(zfp));
-
- zfp_stream_close(zfp);
-
- return true;
- }
-
- #endif
-
- //
- // -----------------------------------------------------------------
- //
-
- // heuristics
- #define TINYEXR_DIMENSION_THRESHOLD (1024 * 8192)
-
- // TODO(syoyo): Refactor function arguments.
- static bool DecodePixelData(/* out */ unsigned char **out_images,
- const int *requested_pixel_types,
- const unsigned char *data_ptr, size_t data_len,
- int compression_type, int line_order, int width,
- int height, int x_stride, int y, int line_no,
- int num_lines, size_t pixel_data_size,
- size_t num_attributes,
- const EXRAttribute *attributes, size_t num_channels,
- const EXRChannelInfo *channels,
- const std::vector<size_t> &channel_offset_list) {
- if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { // PIZ
- #if TINYEXR_USE_PIZ
- if ((width == 0) || (num_lines == 0) || (pixel_data_size == 0)) {
- // Invalid input #90
- return false;
- }
-
- // Allocate original data size.
- std::vector<unsigned char> outBuf(static_cast<size_t>(
- static_cast<size_t>(width * num_lines) * pixel_data_size));
- size_t tmpBufLen = outBuf.size();
-
- bool ret = tinyexr::DecompressPiz(
- reinterpret_cast<unsigned char *>(&outBuf.at(0)), data_ptr, tmpBufLen,
- data_len, static_cast<int>(num_channels), channels, width, num_lines);
-
- if (!ret) {
- return false;
- }
-
- // For PIZ_COMPRESSION:
- // pixel sample data for channel 0 for scanline 0
- // pixel sample data for channel 1 for scanline 0
- // pixel sample data for channel ... for scanline 0
- // pixel sample data for channel n for scanline 0
- // pixel sample data for channel 0 for scanline 1
- // pixel sample data for channel 1 for scanline 1
- // pixel sample data for channel ... for scanline 1
- // pixel sample data for channel n for scanline 1
- // ...
- for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
- if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
- &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- FP16 hf;
-
- // hf.u = line_ptr[u];
- // use `cpy` to avoid unaligned memory access when compiler's
- // optimization is on.
- tinyexr::cpy2(&(hf.u), line_ptr + u);
-
- tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
-
- if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
- unsigned short *image =
- reinterpret_cast<unsigned short **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += static_cast<size_t>(
- (height - 1 - (line_no + static_cast<int>(v)))) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = hf.u;
- } else { // HALF -> FLOAT
- FP32 f32 = half_to_float(hf);
- float *image = reinterpret_cast<float **>(out_images)[c];
- size_t offset = 0;
- if (line_order == 0) {
- offset = (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- offset = static_cast<size_t>(
- (height - 1 - (line_no + static_cast<int>(v)))) *
- static_cast<size_t>(x_stride) +
- u;
- }
- image += offset;
- *image = f32.f;
- }
- }
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
- assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
-
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
- &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- unsigned int val;
- // val = line_ptr[u];
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(&val);
-
- unsigned int *image =
- reinterpret_cast<unsigned int **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += static_cast<size_t>(
- (height - 1 - (line_no + static_cast<int>(v)))) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = val;
- }
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const float *line_ptr = reinterpret_cast<float *>(&outBuf.at(
- v * pixel_data_size * static_cast<size_t>(x_stride) +
- channel_offset_list[c] * static_cast<size_t>(x_stride)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- float val;
- // val = line_ptr[u];
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
-
- float *image = reinterpret_cast<float **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += static_cast<size_t>(
- (height - 1 - (line_no + static_cast<int>(v)))) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = val;
- }
- }
- } else {
- assert(0);
- }
- }
- #else
- assert(0 && "PIZ is enabled in this build");
- return false;
- #endif
-
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS ||
- compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
- // Allocate original data size.
- std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
- static_cast<size_t>(num_lines) *
- pixel_data_size);
-
- unsigned long dstLen = static_cast<unsigned long>(outBuf.size());
- assert(dstLen > 0);
- if (!tinyexr::DecompressZip(
- reinterpret_cast<unsigned char *>(&outBuf.at(0)), &dstLen, data_ptr,
- static_cast<unsigned long>(data_len))) {
- return false;
- }
-
- // For ZIP_COMPRESSION:
- // pixel sample data for channel 0 for scanline 0
- // pixel sample data for channel 1 for scanline 0
- // pixel sample data for channel ... for scanline 0
- // pixel sample data for channel n for scanline 0
- // pixel sample data for channel 0 for scanline 1
- // pixel sample data for channel 1 for scanline 1
- // pixel sample data for channel ... for scanline 1
- // pixel sample data for channel n for scanline 1
- // ...
- for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
- if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
- &outBuf.at(v * static_cast<size_t>(pixel_data_size) *
- static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- tinyexr::FP16 hf;
-
- // hf.u = line_ptr[u];
- tinyexr::cpy2(&(hf.u), line_ptr + u);
-
- tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
-
- if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
- unsigned short *image =
- reinterpret_cast<unsigned short **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = hf.u;
- } else { // HALF -> FLOAT
- tinyexr::FP32 f32 = half_to_float(hf);
- float *image = reinterpret_cast<float **>(out_images)[c];
- size_t offset = 0;
- if (line_order == 0) {
- offset = (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- offset = (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- image += offset;
-
- *image = f32.f;
- }
- }
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
- assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
-
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
- &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- unsigned int val;
- // val = line_ptr[u];
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(&val);
-
- unsigned int *image =
- reinterpret_cast<unsigned int **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = val;
- }
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const float *line_ptr = reinterpret_cast<float *>(
- &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- float val;
- // val = line_ptr[u];
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
-
- float *image = reinterpret_cast<float **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = val;
- }
- }
- } else {
- assert(0);
- return false;
- }
- }
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
- // Allocate original data size.
- std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
- static_cast<size_t>(num_lines) *
- pixel_data_size);
-
- unsigned long dstLen = static_cast<unsigned long>(outBuf.size());
- if (dstLen == 0) {
- return false;
- }
-
- if (!tinyexr::DecompressRle(
- reinterpret_cast<unsigned char *>(&outBuf.at(0)), dstLen, data_ptr,
- static_cast<unsigned long>(data_len))) {
- return false;
- }
-
- // For RLE_COMPRESSION:
- // pixel sample data for channel 0 for scanline 0
- // pixel sample data for channel 1 for scanline 0
- // pixel sample data for channel ... for scanline 0
- // pixel sample data for channel n for scanline 0
- // pixel sample data for channel 0 for scanline 1
- // pixel sample data for channel 1 for scanline 1
- // pixel sample data for channel ... for scanline 1
- // pixel sample data for channel n for scanline 1
- // ...
- for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
- if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
- &outBuf.at(v * static_cast<size_t>(pixel_data_size) *
- static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- tinyexr::FP16 hf;
-
- // hf.u = line_ptr[u];
- tinyexr::cpy2(&(hf.u), line_ptr + u);
-
- tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
-
- if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
- unsigned short *image =
- reinterpret_cast<unsigned short **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = hf.u;
- } else { // HALF -> FLOAT
- tinyexr::FP32 f32 = half_to_float(hf);
- float *image = reinterpret_cast<float **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = f32.f;
- }
- }
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
- assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
-
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
- &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- unsigned int val;
- // val = line_ptr[u];
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(&val);
-
- unsigned int *image =
- reinterpret_cast<unsigned int **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = val;
- }
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const float *line_ptr = reinterpret_cast<float *>(
- &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- float val;
- // val = line_ptr[u];
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
-
- float *image = reinterpret_cast<float **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = val;
- }
- }
- } else {
- assert(0);
- return false;
- }
- }
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- #if TINYEXR_USE_ZFP
- tinyexr::ZFPCompressionParam zfp_compression_param;
- std::string e;
- if (!tinyexr::FindZFPCompressionParam(&zfp_compression_param, attributes,
- int(num_attributes), &e)) {
- // This code path should not be reachable.
- assert(0);
- return false;
- }
-
- // Allocate original data size.
- std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
- static_cast<size_t>(num_lines) *
- pixel_data_size);
-
- unsigned long dstLen = outBuf.size();
- assert(dstLen > 0);
- tinyexr::DecompressZfp(reinterpret_cast<float *>(&outBuf.at(0)), width,
- num_lines, num_channels, data_ptr,
- static_cast<unsigned long>(data_len),
- zfp_compression_param);
-
- // For ZFP_COMPRESSION:
- // pixel sample data for channel 0 for scanline 0
- // pixel sample data for channel 1 for scanline 0
- // pixel sample data for channel ... for scanline 0
- // pixel sample data for channel n for scanline 0
- // pixel sample data for channel 0 for scanline 1
- // pixel sample data for channel 1 for scanline 1
- // pixel sample data for channel ... for scanline 1
- // pixel sample data for channel n for scanline 1
- // ...
- for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
- assert(channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT);
- if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- const float *line_ptr = reinterpret_cast<float *>(
- &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (size_t u = 0; u < static_cast<size_t>(width); u++) {
- float val;
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
-
- float *image = reinterpret_cast<float **>(out_images)[c];
- if (line_order == 0) {
- image += (static_cast<size_t>(line_no) + v) *
- static_cast<size_t>(x_stride) +
- u;
- } else {
- image += (static_cast<size_t>(height) - 1U -
- (static_cast<size_t>(line_no) + v)) *
- static_cast<size_t>(x_stride) +
- u;
- }
- *image = val;
- }
- }
- } else {
- assert(0);
- return false;
- }
- }
- #else
- (void)attributes;
- (void)num_attributes;
- (void)num_channels;
- assert(0);
- return false;
- #endif
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
- for (size_t c = 0; c < num_channels; c++) {
- for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
- if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
- const unsigned short *line_ptr =
- reinterpret_cast<const unsigned short *>(
- data_ptr + v * pixel_data_size * size_t(width) +
- channel_offset_list[c] * static_cast<size_t>(width));
-
- if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
- unsigned short *outLine =
- reinterpret_cast<unsigned short *>(out_images[c]);
- if (line_order == 0) {
- outLine += (size_t(y) + v) * size_t(x_stride);
- } else {
- outLine +=
- (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
- }
-
- for (int u = 0; u < width; u++) {
- tinyexr::FP16 hf;
-
- // hf.u = line_ptr[u];
- tinyexr::cpy2(&(hf.u), line_ptr + u);
-
- tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
-
- outLine[u] = hf.u;
- }
- } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
- float *outLine = reinterpret_cast<float *>(out_images[c]);
- if (line_order == 0) {
- outLine += (size_t(y) + v) * size_t(x_stride);
- } else {
- outLine +=
- (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
- }
-
- if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
- (data_ptr + data_len)) {
- // Insufficient data size
- return false;
- }
-
- for (int u = 0; u < width; u++) {
- tinyexr::FP16 hf;
-
- // address may not be aliged. use byte-wise copy for safety.#76
- // hf.u = line_ptr[u];
- tinyexr::cpy2(&(hf.u), line_ptr + u);
-
- tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
-
- tinyexr::FP32 f32 = half_to_float(hf);
-
- outLine[u] = f32.f;
- }
- } else {
- assert(0);
- return false;
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- const float *line_ptr = reinterpret_cast<const float *>(
- data_ptr + v * pixel_data_size * size_t(width) +
- channel_offset_list[c] * static_cast<size_t>(width));
-
- float *outLine = reinterpret_cast<float *>(out_images[c]);
- if (line_order == 0) {
- outLine += (size_t(y) + v) * size_t(x_stride);
- } else {
- outLine +=
- (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
- }
-
- if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
- (data_ptr + data_len)) {
- // Insufficient data size
- return false;
- }
-
- for (int u = 0; u < width; u++) {
- float val;
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
-
- outLine[u] = val;
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
- const unsigned int *line_ptr = reinterpret_cast<const unsigned int *>(
- data_ptr + v * pixel_data_size * size_t(width) +
- channel_offset_list[c] * static_cast<size_t>(width));
-
- unsigned int *outLine =
- reinterpret_cast<unsigned int *>(out_images[c]);
- if (line_order == 0) {
- outLine += (size_t(y) + v) * size_t(x_stride);
- } else {
- outLine +=
- (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
- }
-
- for (int u = 0; u < width; u++) {
- if (reinterpret_cast<const unsigned char *>(line_ptr + u) >=
- (data_ptr + data_len)) {
- // Corrupsed data?
- return false;
- }
-
- unsigned int val;
- tinyexr::cpy4(&val, line_ptr + u);
-
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
-
- outLine[u] = val;
- }
- }
- }
- }
- }
-
- return true;
- }
-
- static bool DecodeTiledPixelData(
- unsigned char **out_images, int *width, int *height,
- const int *requested_pixel_types, const unsigned char *data_ptr,
- size_t data_len, int compression_type, int line_order, int data_width,
- int data_height, int tile_offset_x, int tile_offset_y, int tile_size_x,
- int tile_size_y, size_t pixel_data_size, size_t num_attributes,
- const EXRAttribute *attributes, size_t num_channels,
- const EXRChannelInfo *channels,
- const std::vector<size_t> &channel_offset_list) {
- // Here, data_width and data_height are the dimensions of the current (sub)level.
- if (tile_size_x * tile_offset_x > data_width ||
- tile_size_y * tile_offset_y > data_height) {
- return false;
- }
-
- // Compute actual image size in a tile.
- if ((tile_offset_x + 1) * tile_size_x >= data_width) {
- (*width) = data_width - (tile_offset_x * tile_size_x);
- } else {
- (*width) = tile_size_x;
- }
-
- if ((tile_offset_y + 1) * tile_size_y >= data_height) {
- (*height) = data_height - (tile_offset_y * tile_size_y);
- } else {
- (*height) = tile_size_y;
- }
-
- // Image size = tile size.
- return DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len,
- compression_type, line_order, (*width), tile_size_y,
- /* stride */ tile_size_x, /* y */ 0, /* line_no */ 0,
- (*height), pixel_data_size, num_attributes, attributes,
- num_channels, channels, channel_offset_list);
- }
-
- static bool ComputeChannelLayout(std::vector<size_t> *channel_offset_list,
- int *pixel_data_size, size_t *channel_offset,
- int num_channels,
- const EXRChannelInfo *channels) {
- channel_offset_list->resize(static_cast<size_t>(num_channels));
-
- (*pixel_data_size) = 0;
- (*channel_offset) = 0;
-
- for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
- (*channel_offset_list)[c] = (*channel_offset);
- if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
- (*pixel_data_size) += sizeof(unsigned short);
- (*channel_offset) += sizeof(unsigned short);
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- (*pixel_data_size) += sizeof(float);
- (*channel_offset) += sizeof(float);
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
- (*pixel_data_size) += sizeof(unsigned int);
- (*channel_offset) += sizeof(unsigned int);
- } else {
- // ???
- return false;
- }
- }
- return true;
- }
-
- static unsigned char **AllocateImage(int num_channels,
- const EXRChannelInfo *channels,
- const int *requested_pixel_types,
- int data_width, int data_height) {
- unsigned char **images =
- reinterpret_cast<unsigned char **>(static_cast<float **>(
- malloc(sizeof(float *) * static_cast<size_t>(num_channels))));
-
- for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
- size_t data_len =
- static_cast<size_t>(data_width) * static_cast<size_t>(data_height);
- if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
- // pixel_data_size += sizeof(unsigned short);
- // channel_offset += sizeof(unsigned short);
- // Alloc internal image for half type.
- if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
- images[c] =
- reinterpret_cast<unsigned char *>(static_cast<unsigned short *>(
- malloc(sizeof(unsigned short) * data_len)));
- } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
- images[c] = reinterpret_cast<unsigned char *>(
- static_cast<float *>(malloc(sizeof(float) * data_len)));
- } else {
- assert(0);
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- // pixel_data_size += sizeof(float);
- // channel_offset += sizeof(float);
- images[c] = reinterpret_cast<unsigned char *>(
- static_cast<float *>(malloc(sizeof(float) * data_len)));
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
- // pixel_data_size += sizeof(unsigned int);
- // channel_offset += sizeof(unsigned int);
- images[c] = reinterpret_cast<unsigned char *>(
- static_cast<unsigned int *>(malloc(sizeof(unsigned int) * data_len)));
- } else {
- assert(0);
- }
- }
-
- return images;
- }
-
- #ifdef _WIN32
- static inline std::wstring UTF8ToWchar(const std::string &str) {
- int wstr_size =
- MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), NULL, 0);
- std::wstring wstr(wstr_size, 0);
- MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), &wstr[0],
- (int)wstr.size());
- return wstr;
- }
- #endif
-
-
- static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
- const EXRVersion *version, std::string *err,
- const unsigned char *buf, size_t size) {
- const char *marker = reinterpret_cast<const char *>(&buf[0]);
-
- if (empty_header) {
- (*empty_header) = false;
- }
-
- if (version->multipart) {
- if (size > 0 && marker[0] == '\0') {
- // End of header list.
- if (empty_header) {
- (*empty_header) = true;
- }
- return TINYEXR_SUCCESS;
- }
- }
-
- // According to the spec, the header of every OpenEXR file must contain at
- // least the following attributes:
- //
- // channels chlist
- // compression compression
- // dataWindow box2i
- // displayWindow box2i
- // lineOrder lineOrder
- // pixelAspectRatio float
- // screenWindowCenter v2f
- // screenWindowWidth float
- bool has_channels = false;
- bool has_compression = false;
- bool has_data_window = false;
- bool has_display_window = false;
- bool has_line_order = false;
- bool has_pixel_aspect_ratio = false;
- bool has_screen_window_center = false;
- bool has_screen_window_width = false;
- bool has_name = false;
- bool has_type = false;
-
- info->name.clear();
- info->type.clear();
-
- info->data_window.min_x = 0;
- info->data_window.min_y = 0;
- info->data_window.max_x = 0;
- info->data_window.max_y = 0;
- info->line_order = 0; // @fixme
- info->display_window.min_x = 0;
- info->display_window.min_y = 0;
- info->display_window.max_x = 0;
- info->display_window.max_y = 0;
- info->screen_window_center[0] = 0.0f;
- info->screen_window_center[1] = 0.0f;
- info->screen_window_width = -1.0f;
- info->pixel_aspect_ratio = -1.0f;
-
- info->tiled = 0;
- info->tile_size_x = -1;
- info->tile_size_y = -1;
- info->tile_level_mode = -1;
- info->tile_rounding_mode = -1;
-
- info->attributes.clear();
-
- // Read attributes
- size_t orig_size = size;
- for (size_t nattr = 0; nattr < TINYEXR_MAX_HEADER_ATTRIBUTES; nattr++) {
- if (0 == size) {
- if (err) {
- (*err) += "Insufficient data size for attributes.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- } else if (marker[0] == '\0') {
- size--;
- break;
- }
-
- std::string attr_name;
- std::string attr_type;
- std::vector<unsigned char> data;
- size_t marker_size;
- if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size,
- marker, size)) {
- if (err) {
- (*err) += "Failed to read attribute.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
- marker += marker_size;
- size -= marker_size;
-
- // For a multipart file, the version field 9th bit is 0.
- if ((version->tiled || version->multipart || version->non_image) && attr_name.compare("tiles") == 0) {
- unsigned int x_size, y_size;
- unsigned char tile_mode;
- if (data.size() != 9) {
- if (err) {
- (*err) += "(ParseEXRHeader) Invalid attribute data size. Attribute data size must be 9.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- assert(data.size() == 9);
- memcpy(&x_size, &data.at(0), sizeof(int));
- memcpy(&y_size, &data.at(4), sizeof(int));
- tile_mode = data[8];
- tinyexr::swap4(&x_size);
- tinyexr::swap4(&y_size);
-
- if (x_size > static_cast<unsigned int>(std::numeric_limits<int>::max()) ||
- y_size > static_cast<unsigned int>(std::numeric_limits<int>::max())) {
- if (err) {
- (*err) = "Tile sizes were invalid.";
- }
- return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
- }
-
- info->tile_size_x = static_cast<int>(x_size);
- info->tile_size_y = static_cast<int>(y_size);
-
- // mode = levelMode + roundingMode * 16
- info->tile_level_mode = tile_mode & 0x3;
- info->tile_rounding_mode = (tile_mode >> 4) & 0x1;
- info->tiled = 1;
- } else if (attr_name.compare("compression") == 0) {
- bool ok = false;
- if (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ) {
- ok = true;
- }
-
- if (data[0] == TINYEXR_COMPRESSIONTYPE_PIZ) {
- #if TINYEXR_USE_PIZ
- ok = true;
- #else
- if (err) {
- (*err) = "PIZ compression is not supported.";
- }
- return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
- #endif
- }
-
- if (data[0] == TINYEXR_COMPRESSIONTYPE_ZFP) {
- #if TINYEXR_USE_ZFP
- ok = true;
- #else
- if (err) {
- (*err) = "ZFP compression is not supported.";
- }
- return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
- #endif
- }
-
- if (!ok) {
- if (err) {
- (*err) = "Unknown compression type.";
- }
- return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
- }
-
- info->compression_type = static_cast<int>(data[0]);
- has_compression = true;
-
- } else if (attr_name.compare("channels") == 0) {
- // name: zero-terminated string, from 1 to 255 bytes long
- // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2
- // pLinear: unsigned char, possible values are 0 and 1
- // reserved: three chars, should be zero
- // xSampling: int
- // ySampling: int
-
- if (!ReadChannelInfo(info->channels, data)) {
- if (err) {
- (*err) += "Failed to parse channel info.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- if (info->channels.size() < 1) {
- if (err) {
- (*err) += "# of channels is zero.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- has_channels = true;
-
- } else if (attr_name.compare("dataWindow") == 0) {
- if (data.size() >= 16) {
- memcpy(&info->data_window.min_x, &data.at(0), sizeof(int));
- memcpy(&info->data_window.min_y, &data.at(4), sizeof(int));
- memcpy(&info->data_window.max_x, &data.at(8), sizeof(int));
- memcpy(&info->data_window.max_y, &data.at(12), sizeof(int));
- tinyexr::swap4(&info->data_window.min_x);
- tinyexr::swap4(&info->data_window.min_y);
- tinyexr::swap4(&info->data_window.max_x);
- tinyexr::swap4(&info->data_window.max_y);
- has_data_window = true;
- }
- } else if (attr_name.compare("displayWindow") == 0) {
- if (data.size() >= 16) {
- memcpy(&info->display_window.min_x, &data.at(0), sizeof(int));
- memcpy(&info->display_window.min_y, &data.at(4), sizeof(int));
- memcpy(&info->display_window.max_x, &data.at(8), sizeof(int));
- memcpy(&info->display_window.max_y, &data.at(12), sizeof(int));
- tinyexr::swap4(&info->display_window.min_x);
- tinyexr::swap4(&info->display_window.min_y);
- tinyexr::swap4(&info->display_window.max_x);
- tinyexr::swap4(&info->display_window.max_y);
-
- has_display_window = true;
- }
- } else if (attr_name.compare("lineOrder") == 0) {
- if (data.size() >= 1) {
- info->line_order = static_cast<int>(data[0]);
- has_line_order = true;
- }
- } else if (attr_name.compare("pixelAspectRatio") == 0) {
- if (data.size() >= sizeof(float)) {
- memcpy(&info->pixel_aspect_ratio, &data.at(0), sizeof(float));
- tinyexr::swap4(&info->pixel_aspect_ratio);
- has_pixel_aspect_ratio = true;
- }
- } else if (attr_name.compare("screenWindowCenter") == 0) {
- if (data.size() >= 8) {
- memcpy(&info->screen_window_center[0], &data.at(0), sizeof(float));
- memcpy(&info->screen_window_center[1], &data.at(4), sizeof(float));
- tinyexr::swap4(&info->screen_window_center[0]);
- tinyexr::swap4(&info->screen_window_center[1]);
- has_screen_window_center = true;
- }
- } else if (attr_name.compare("screenWindowWidth") == 0) {
- if (data.size() >= sizeof(float)) {
- memcpy(&info->screen_window_width, &data.at(0), sizeof(float));
- tinyexr::swap4(&info->screen_window_width);
-
- has_screen_window_width = true;
- }
- } else if (attr_name.compare("chunkCount") == 0) {
- if (data.size() >= sizeof(int)) {
- memcpy(&info->chunk_count, &data.at(0), sizeof(int));
- tinyexr::swap4(&info->chunk_count);
- }
- } else if (attr_name.compare("name") == 0) {
- if (!data.empty() && data[0]) {
- data.push_back(0);
- size_t len = strlen(reinterpret_cast<const char*>(&data[0]));
- info->name.resize(len);
- info->name.assign(reinterpret_cast<const char*>(&data[0]), len);
- has_name = true;
- }
- } else if (attr_name.compare("type") == 0) {
- if (!data.empty() && data[0]) {
- data.push_back(0);
- size_t len = strlen(reinterpret_cast<const char*>(&data[0]));
- info->type.resize(len);
- info->type.assign(reinterpret_cast<const char*>(&data[0]), len);
- has_type = true;
- }
- } else {
- // Custom attribute(up to TINYEXR_MAX_CUSTOM_ATTRIBUTES)
- if (info->attributes.size() < TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
- EXRAttribute attrib;
- #ifdef _MSC_VER
- strncpy_s(attrib.name, attr_name.c_str(), 255);
- strncpy_s(attrib.type, attr_type.c_str(), 255);
- #else
- strncpy(attrib.name, attr_name.c_str(), 255);
- strncpy(attrib.type, attr_type.c_str(), 255);
- #endif
- attrib.name[255] = '\0';
- attrib.type[255] = '\0';
- attrib.size = static_cast<int>(data.size());
- attrib.value = static_cast<unsigned char *>(malloc(data.size()));
- memcpy(reinterpret_cast<char *>(attrib.value), &data.at(0),
- data.size());
- info->attributes.push_back(attrib);
- }
- }
- }
-
- // Check if required attributes exist
- {
- std::stringstream ss_err;
-
- if (!has_compression) {
- ss_err << "\"compression\" attribute not found in the header."
- << std::endl;
- }
-
- if (!has_channels) {
- ss_err << "\"channels\" attribute not found in the header." << std::endl;
- }
-
- if (!has_line_order) {
- ss_err << "\"lineOrder\" attribute not found in the header." << std::endl;
- }
-
- if (!has_display_window) {
- ss_err << "\"displayWindow\" attribute not found in the header."
- << std::endl;
- }
-
- if (!has_data_window) {
- ss_err << "\"dataWindow\" attribute not found in the header or invalid."
- << std::endl;
- }
-
- if (!has_pixel_aspect_ratio) {
- ss_err << "\"pixelAspectRatio\" attribute not found in the header."
- << std::endl;
- }
-
- if (!has_screen_window_width) {
- ss_err << "\"screenWindowWidth\" attribute not found in the header."
- << std::endl;
- }
-
- if (!has_screen_window_center) {
- ss_err << "\"screenWindowCenter\" attribute not found in the header."
- << std::endl;
- }
-
- if (version->multipart || version->non_image) {
- if (!has_name) {
- ss_err << "\"name\" attribute not found in the header."
- << std::endl;
- }
- if (!has_type) {
- ss_err << "\"type\" attribute not found in the header."
- << std::endl;
- }
- }
-
- if (!(ss_err.str().empty())) {
- if (err) {
- (*err) += ss_err.str();
- }
- return TINYEXR_ERROR_INVALID_HEADER;
- }
- }
-
- info->header_len = static_cast<unsigned int>(orig_size - size);
-
- return TINYEXR_SUCCESS;
- }
-
- // C++ HeaderInfo to C EXRHeader conversion.
- static bool ConvertHeader(EXRHeader *exr_header, const HeaderInfo &info, std::string *warn, std::string *err) {
- exr_header->pixel_aspect_ratio = info.pixel_aspect_ratio;
- exr_header->screen_window_center[0] = info.screen_window_center[0];
- exr_header->screen_window_center[1] = info.screen_window_center[1];
- exr_header->screen_window_width = info.screen_window_width;
- exr_header->chunk_count = info.chunk_count;
- exr_header->display_window.min_x = info.display_window.min_x;
- exr_header->display_window.min_y = info.display_window.min_y;
- exr_header->display_window.max_x = info.display_window.max_x;
- exr_header->display_window.max_y = info.display_window.max_y;
- exr_header->data_window.min_x = info.data_window.min_x;
- exr_header->data_window.min_y = info.data_window.min_y;
- exr_header->data_window.max_x = info.data_window.max_x;
- exr_header->data_window.max_y = info.data_window.max_y;
- exr_header->line_order = info.line_order;
- exr_header->compression_type = info.compression_type;
- exr_header->tiled = info.tiled;
- exr_header->tile_size_x = info.tile_size_x;
- exr_header->tile_size_y = info.tile_size_y;
- exr_header->tile_level_mode = info.tile_level_mode;
- exr_header->tile_rounding_mode = info.tile_rounding_mode;
-
- EXRSetNameAttr(exr_header, info.name.c_str());
-
-
- if (!info.type.empty()) {
- bool valid = true;
- if (info.type == "scanlineimage") {
- if (exr_header->tiled) {
- if (err) {
- (*err) += "(ConvertHeader) tiled bit must be off for `scanlineimage` type.\n";
- }
- valid = false;
- }
- } else if (info.type == "tiledimage") {
- if (!exr_header->tiled) {
- if (err) {
- (*err) += "(ConvertHeader) tiled bit must be on for `tiledimage` type.\n";
- }
- valid = false;
- }
- } else if (info.type == "deeptile") {
- exr_header->non_image = 1;
- if (!exr_header->tiled) {
- if (err) {
- (*err) += "(ConvertHeader) tiled bit must be on for `deeptile` type.\n";
- }
- valid = false;
- }
- } else if (info.type == "deepscanline") {
- exr_header->non_image = 1;
- if (exr_header->tiled) {
- if (err) {
- (*err) += "(ConvertHeader) tiled bit must be off for `deepscanline` type.\n";
- }
- //valid = false;
- }
- } else {
- if (warn) {
- std::stringstream ss;
- ss << "(ConvertHeader) Unsupported or unknown info.type: " << info.type << "\n";
- (*warn) += ss.str();
- }
- }
-
- if (!valid) {
- return false;
- }
- }
-
- exr_header->num_channels = static_cast<int>(info.channels.size());
-
- exr_header->channels = static_cast<EXRChannelInfo *>(malloc(
- sizeof(EXRChannelInfo) * static_cast<size_t>(exr_header->num_channels)));
- for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
- #ifdef _MSC_VER
- strncpy_s(exr_header->channels[c].name, info.channels[c].name.c_str(), 255);
- #else
- strncpy(exr_header->channels[c].name, info.channels[c].name.c_str(), 255);
- #endif
- // manually add '\0' for safety.
- exr_header->channels[c].name[255] = '\0';
-
- exr_header->channels[c].pixel_type = info.channels[c].pixel_type;
- exr_header->channels[c].p_linear = info.channels[c].p_linear;
- exr_header->channels[c].x_sampling = info.channels[c].x_sampling;
- exr_header->channels[c].y_sampling = info.channels[c].y_sampling;
- }
-
- exr_header->pixel_types = static_cast<int *>(
- malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels)));
- for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
- exr_header->pixel_types[c] = info.channels[c].pixel_type;
- }
-
- // Initially fill with values of `pixel_types`
- exr_header->requested_pixel_types = static_cast<int *>(
- malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels)));
- for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
- exr_header->requested_pixel_types[c] = info.channels[c].pixel_type;
- }
-
- exr_header->num_custom_attributes = static_cast<int>(info.attributes.size());
-
- if (exr_header->num_custom_attributes > 0) {
- // TODO(syoyo): Report warning when # of attributes exceeds
- // `TINYEXR_MAX_CUSTOM_ATTRIBUTES`
- if (exr_header->num_custom_attributes > TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
- exr_header->num_custom_attributes = TINYEXR_MAX_CUSTOM_ATTRIBUTES;
- }
-
- exr_header->custom_attributes = static_cast<EXRAttribute *>(malloc(
- sizeof(EXRAttribute) * size_t(exr_header->num_custom_attributes)));
-
- for (size_t i = 0; i < info.attributes.size(); i++) {
- memcpy(exr_header->custom_attributes[i].name, info.attributes[i].name,
- 256);
- memcpy(exr_header->custom_attributes[i].type, info.attributes[i].type,
- 256);
- exr_header->custom_attributes[i].size = info.attributes[i].size;
- // Just copy pointer
- exr_header->custom_attributes[i].value = info.attributes[i].value;
- }
-
- } else {
- exr_header->custom_attributes = NULL;
- }
-
- exr_header->header_len = info.header_len;
-
- return true;
- }
-
- struct OffsetData {
- OffsetData() : num_x_levels(0), num_y_levels(0) {}
- std::vector<std::vector<std::vector <tinyexr::tinyexr_uint64> > > offsets;
- int num_x_levels;
- int num_y_levels;
- };
-
- static int LevelIndex(int lx, int ly, int tile_level_mode, int num_x_levels) {
- switch (tile_level_mode) {
- case TINYEXR_TILE_ONE_LEVEL:
- return 0;
-
- case TINYEXR_TILE_MIPMAP_LEVELS:
- return lx;
-
- case TINYEXR_TILE_RIPMAP_LEVELS:
- return lx + ly * num_x_levels;
-
- default:
- assert(false);
- }
- return 0;
- }
-
- static int LevelSize(int toplevel_size, int level, int tile_rounding_mode) {
- assert(level >= 0);
-
- int b = static_cast<int>(1u << static_cast<unsigned int>(level));
- int level_size = toplevel_size / b;
-
- if (tile_rounding_mode == TINYEXR_TILE_ROUND_UP && level_size * b < toplevel_size)
- level_size += 1;
-
- return std::max(level_size, 1);
- }
-
- static int DecodeTiledLevel(EXRImage* exr_image, const EXRHeader* exr_header,
- const OffsetData& offset_data,
- const std::vector<size_t>& channel_offset_list,
- int pixel_data_size,
- const unsigned char* head, const size_t size,
- std::string* err) {
- int num_channels = exr_header->num_channels;
-
- int level_index = LevelIndex(exr_image->level_x, exr_image->level_y, exr_header->tile_level_mode, offset_data.num_x_levels);
- int num_y_tiles = int(offset_data.offsets[size_t(level_index)].size());
- assert(num_y_tiles);
- int num_x_tiles = int(offset_data.offsets[size_t(level_index)][0].size());
- assert(num_x_tiles);
- int num_tiles = num_x_tiles * num_y_tiles;
-
- int err_code = TINYEXR_SUCCESS;
-
- enum {
- EF_SUCCESS = 0,
- EF_INVALID_DATA = 1,
- EF_INSUFFICIENT_DATA = 2,
- EF_FAILED_TO_DECODE = 4
- };
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- std::atomic<unsigned> error_flag(EF_SUCCESS);
- #else
- unsigned error_flag(EF_SUCCESS);
- #endif
-
- // Although the spec says : "...the data window is subdivided into an array of smaller rectangles...",
- // the IlmImf library allows the dimensions of the tile to be larger (or equal) than the dimensions of the data window.
- #if 0
- if ((exr_header->tile_size_x > exr_image->width || exr_header->tile_size_y > exr_image->height) &&
- exr_image->level_x == 0 && exr_image->level_y == 0) {
- if (err) {
- (*err) += "Failed to decode tile data.\n";
- }
- err_code = TINYEXR_ERROR_INVALID_DATA;
- }
- #endif
- exr_image->tiles = static_cast<EXRTile*>(
- calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles)));
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- std::vector<std::thread> workers;
- std::atomic<int> tile_count(0);
-
- int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
- if (num_threads > int(num_tiles)) {
- num_threads = int(num_tiles);
- }
-
- for (int t = 0; t < num_threads; t++) {
- workers.emplace_back(std::thread([&]()
- {
- int tile_idx = 0;
- while ((tile_idx = tile_count++) < num_tiles) {
-
- #else
- #if TINYEXR_USE_OPENMP
- #pragma omp parallel for
- #endif
- for (int tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
- #endif
- // Allocate memory for each tile.
- exr_image->tiles[tile_idx].images = tinyexr::AllocateImage(
- num_channels, exr_header->channels,
- exr_header->requested_pixel_types, exr_header->tile_size_x,
- exr_header->tile_size_y);
-
- int x_tile = tile_idx % num_x_tiles;
- int y_tile = tile_idx / num_x_tiles;
- // 16 byte: tile coordinates
- // 4 byte : data size
- // ~ : data(uncompressed or compressed)
- tinyexr::tinyexr_uint64 offset = offset_data.offsets[size_t(level_index)][size_t(y_tile)][size_t(x_tile)];
- if (offset + sizeof(int) * 5 > size) {
- // Insufficient data size.
- error_flag |= EF_INSUFFICIENT_DATA;
- continue;
- }
-
- size_t data_size =
- size_t(size - (offset + sizeof(int) * 5));
- const unsigned char* data_ptr =
- reinterpret_cast<const unsigned char*>(head + offset);
-
- int tile_coordinates[4];
- memcpy(tile_coordinates, data_ptr, sizeof(int) * 4);
- tinyexr::swap4(&tile_coordinates[0]);
- tinyexr::swap4(&tile_coordinates[1]);
- tinyexr::swap4(&tile_coordinates[2]);
- tinyexr::swap4(&tile_coordinates[3]);
-
- if (tile_coordinates[2] != exr_image->level_x) {
- // Invalid data.
- error_flag |= EF_INVALID_DATA;
- continue;
- }
- if (tile_coordinates[3] != exr_image->level_y) {
- // Invalid data.
- error_flag |= EF_INVALID_DATA;
- continue;
- }
-
- int data_len;
- memcpy(&data_len, data_ptr + 16,
- sizeof(int)); // 16 = sizeof(tile_coordinates)
- tinyexr::swap4(&data_len);
-
- if (data_len < 2 || size_t(data_len) > data_size) {
- // Insufficient data size.
- error_flag |= EF_INSUFFICIENT_DATA;
- continue;
- }
-
- // Move to data addr: 20 = 16 + 4;
- data_ptr += 20;
- bool ret = tinyexr::DecodeTiledPixelData(
- exr_image->tiles[tile_idx].images,
- &(exr_image->tiles[tile_idx].width),
- &(exr_image->tiles[tile_idx].height),
- exr_header->requested_pixel_types, data_ptr,
- static_cast<size_t>(data_len), exr_header->compression_type,
- exr_header->line_order,
- exr_image->width, exr_image->height,
- tile_coordinates[0], tile_coordinates[1], exr_header->tile_size_x,
- exr_header->tile_size_y, static_cast<size_t>(pixel_data_size),
- static_cast<size_t>(exr_header->num_custom_attributes),
- exr_header->custom_attributes,
- static_cast<size_t>(exr_header->num_channels),
- exr_header->channels, channel_offset_list);
-
- if (!ret) {
- // Failed to decode tile data.
- error_flag |= EF_FAILED_TO_DECODE;
- }
-
- exr_image->tiles[tile_idx].offset_x = tile_coordinates[0];
- exr_image->tiles[tile_idx].offset_y = tile_coordinates[1];
- exr_image->tiles[tile_idx].level_x = tile_coordinates[2];
- exr_image->tiles[tile_idx].level_y = tile_coordinates[3];
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- }
- }));
- } // num_thread loop
-
- for (auto& t : workers) {
- t.join();
- }
-
- #else
- } // parallel for
- #endif
-
- // Even in the event of an error, the reserved memory may be freed.
- exr_image->num_channels = num_channels;
- exr_image->num_tiles = static_cast<int>(num_tiles);
-
- if (error_flag) err_code = TINYEXR_ERROR_INVALID_DATA;
- if (err) {
- if (error_flag & EF_INSUFFICIENT_DATA) {
- (*err) += "Insufficient data length.\n";
- }
- if (error_flag & EF_FAILED_TO_DECODE) {
- (*err) += "Failed to decode tile data.\n";
- }
- }
- return err_code;
- }
-
- static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
- const OffsetData& offset_data,
- const unsigned char *head, const size_t size,
- std::string *err) {
- int num_channels = exr_header->num_channels;
-
- int num_scanline_blocks = 1;
- if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
- num_scanline_blocks = 16;
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
- num_scanline_blocks = 32;
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- num_scanline_blocks = 16;
-
- #if TINYEXR_USE_ZFP
- tinyexr::ZFPCompressionParam zfp_compression_param;
- if (!FindZFPCompressionParam(&zfp_compression_param,
- exr_header->custom_attributes,
- int(exr_header->num_custom_attributes), err)) {
- return TINYEXR_ERROR_INVALID_HEADER;
- }
- #endif
- }
-
- if (exr_header->data_window.max_x < exr_header->data_window.min_x ||
- exr_header->data_window.max_y < exr_header->data_window.min_y) {
- if (err) {
- (*err) += "Invalid data window.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- int data_width =
- exr_header->data_window.max_x - exr_header->data_window.min_x + 1;
- int data_height =
- exr_header->data_window.max_y - exr_header->data_window.min_y + 1;
-
- // Do not allow too large data_width and data_height. header invalid?
- {
- if ((data_width > TINYEXR_DIMENSION_THRESHOLD) || (data_height > TINYEXR_DIMENSION_THRESHOLD)) {
- if (err) {
- std::stringstream ss;
- ss << "data_with or data_height too large. data_width: " << data_width
- << ", "
- << "data_height = " << data_height << std::endl;
- (*err) += ss.str();
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
- if (exr_header->tiled) {
- if ((exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) || (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD)) {
- if (err) {
- std::stringstream ss;
- ss << "tile with or tile height too large. tile width: " << exr_header->tile_size_x
- << ", "
- << "tile height = " << exr_header->tile_size_y << std::endl;
- (*err) += ss.str();
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
- }
- }
-
- const std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
- size_t num_blocks = offsets.size();
-
- std::vector<size_t> channel_offset_list;
- int pixel_data_size = 0;
- size_t channel_offset = 0;
- if (!tinyexr::ComputeChannelLayout(&channel_offset_list, &pixel_data_size,
- &channel_offset, num_channels,
- exr_header->channels)) {
- if (err) {
- (*err) += "Failed to compute channel layout.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- std::atomic<bool> invalid_data(false);
- #else
- bool invalid_data(false);
- #endif
-
- if (exr_header->tiled) {
- // value check
- if (exr_header->tile_size_x < 0) {
- if (err) {
- std::stringstream ss;
- ss << "Invalid tile size x : " << exr_header->tile_size_x << "\n";
- (*err) += ss.str();
- }
- return TINYEXR_ERROR_INVALID_HEADER;
- }
-
- if (exr_header->tile_size_y < 0) {
- if (err) {
- std::stringstream ss;
- ss << "Invalid tile size y : " << exr_header->tile_size_y << "\n";
- (*err) += ss.str();
- }
- return TINYEXR_ERROR_INVALID_HEADER;
- }
- if (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) {
- EXRImage* level_image = NULL;
- for (int level = 0; level < offset_data.num_x_levels; ++level) {
- if (!level_image) {
- level_image = exr_image;
- } else {
- level_image->next_level = new EXRImage;
- InitEXRImage(level_image->next_level);
- level_image = level_image->next_level;
- }
- level_image->width =
- LevelSize(exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level, exr_header->tile_rounding_mode);
- level_image->height =
- LevelSize(exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level, exr_header->tile_rounding_mode);
- level_image->level_x = level;
- level_image->level_y = level;
-
- int ret = DecodeTiledLevel(level_image, exr_header,
- offset_data,
- channel_offset_list,
- pixel_data_size,
- head, size,
- err);
- if (ret != TINYEXR_SUCCESS) return ret;
- }
- } else {
- EXRImage* level_image = NULL;
- for (int level_y = 0; level_y < offset_data.num_y_levels; ++level_y)
- for (int level_x = 0; level_x < offset_data.num_x_levels; ++level_x) {
- if (!level_image) {
- level_image = exr_image;
- } else {
- level_image->next_level = new EXRImage;
- InitEXRImage(level_image->next_level);
- level_image = level_image->next_level;
- }
-
- level_image->width =
- LevelSize(exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level_x, exr_header->tile_rounding_mode);
- level_image->height =
- LevelSize(exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level_y, exr_header->tile_rounding_mode);
- level_image->level_x = level_x;
- level_image->level_y = level_y;
-
- int ret = DecodeTiledLevel(level_image, exr_header,
- offset_data,
- channel_offset_list,
- pixel_data_size,
- head, size,
- err);
- if (ret != TINYEXR_SUCCESS) return ret;
- }
- }
- } else { // scanline format
- // Don't allow too large image(256GB * pixel_data_size or more). Workaround
- // for #104.
- size_t total_data_len =
- size_t(data_width) * size_t(data_height) * size_t(num_channels);
- const bool total_data_len_overflown =
- sizeof(void *) == 8 ? (total_data_len >= 0x4000000000) : false;
- if ((total_data_len == 0) || total_data_len_overflown) {
- if (err) {
- std::stringstream ss;
- ss << "Image data size is zero or too large: width = " << data_width
- << ", height = " << data_height << ", channels = " << num_channels
- << std::endl;
- (*err) += ss.str();
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- exr_image->images = tinyexr::AllocateImage(
- num_channels, exr_header->channels, exr_header->requested_pixel_types,
- data_width, data_height);
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- std::vector<std::thread> workers;
- std::atomic<int> y_count(0);
-
- int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
- if (num_threads > int(num_blocks)) {
- num_threads = int(num_blocks);
- }
-
- for (int t = 0; t < num_threads; t++) {
- workers.emplace_back(std::thread([&]() {
- int y = 0;
- while ((y = y_count++) < int(num_blocks)) {
-
- #else
-
- #if TINYEXR_USE_OPENMP
- #pragma omp parallel for
- #endif
- for (int y = 0; y < static_cast<int>(num_blocks); y++) {
-
- #endif
- size_t y_idx = static_cast<size_t>(y);
-
- if (offsets[y_idx] + sizeof(int) * 2 > size) {
- invalid_data = true;
- } else {
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(uncompressed or compressed)
- size_t data_size =
- size_t(size - (offsets[y_idx] + sizeof(int) * 2));
- const unsigned char *data_ptr =
- reinterpret_cast<const unsigned char *>(head + offsets[y_idx]);
-
- int line_no;
- memcpy(&line_no, data_ptr, sizeof(int));
- int data_len;
- memcpy(&data_len, data_ptr + 4, sizeof(int));
- tinyexr::swap4(&line_no);
- tinyexr::swap4(&data_len);
-
- if (size_t(data_len) > data_size) {
- invalid_data = true;
-
- } else if ((line_no > (2 << 20)) || (line_no < -(2 << 20))) {
- // Too large value. Assume this is invalid
- // 2**20 = 1048576 = heuristic value.
- invalid_data = true;
- } else if (data_len == 0) {
- // TODO(syoyo): May be ok to raise the threshold for example
- // `data_len < 4`
- invalid_data = true;
- } else {
- // line_no may be negative.
- int end_line_no = (std::min)(line_no + num_scanline_blocks,
- (exr_header->data_window.max_y + 1));
-
- int num_lines = end_line_no - line_no;
-
- if (num_lines <= 0) {
- invalid_data = true;
- } else {
- // Move to data addr: 8 = 4 + 4;
- data_ptr += 8;
-
- // Adjust line_no with data_window.bmin.y
-
- // overflow check
- tinyexr_int64 lno =
- static_cast<tinyexr_int64>(line_no) -
- static_cast<tinyexr_int64>(exr_header->data_window.min_y);
- if (lno > std::numeric_limits<int>::max()) {
- line_no = -1; // invalid
- } else if (lno < -std::numeric_limits<int>::max()) {
- line_no = -1; // invalid
- } else {
- line_no -= exr_header->data_window.min_y;
- }
-
- if (line_no < 0) {
- invalid_data = true;
- } else {
- if (!tinyexr::DecodePixelData(
- exr_image->images, exr_header->requested_pixel_types,
- data_ptr, static_cast<size_t>(data_len),
- exr_header->compression_type, exr_header->line_order,
- data_width, data_height, data_width, y, line_no,
- num_lines, static_cast<size_t>(pixel_data_size),
- static_cast<size_t>(
- exr_header->num_custom_attributes),
- exr_header->custom_attributes,
- static_cast<size_t>(exr_header->num_channels),
- exr_header->channels, channel_offset_list)) {
- invalid_data = true;
- }
- }
- }
- }
- }
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- }
- }));
- }
-
- for (auto &t : workers) {
- t.join();
- }
- #else
- } // omp parallel
- #endif
- }
-
- if (invalid_data) {
- if (err) {
- (*err) += "Invalid data found when decoding pixels.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- // Overwrite `pixel_type` with `requested_pixel_type`.
- {
- for (int c = 0; c < exr_header->num_channels; c++) {
- exr_header->pixel_types[c] = exr_header->requested_pixel_types[c];
- }
- }
-
- {
- exr_image->num_channels = num_channels;
-
- exr_image->width = data_width;
- exr_image->height = data_height;
- }
-
- return TINYEXR_SUCCESS;
- }
-
- static bool ReconstructLineOffsets(
- std::vector<tinyexr::tinyexr_uint64> *offsets, size_t n,
- const unsigned char *head, const unsigned char *marker, const size_t size) {
- assert(head < marker);
- assert(offsets->size() == n);
-
- for (size_t i = 0; i < n; i++) {
- size_t offset = static_cast<size_t>(marker - head);
- // Offset should not exceed whole EXR file/data size.
- if ((offset + sizeof(tinyexr::tinyexr_uint64)) >= size) {
- return false;
- }
-
- int y;
- unsigned int data_len;
-
- memcpy(&y, marker, sizeof(int));
- memcpy(&data_len, marker + 4, sizeof(unsigned int));
-
- if (data_len >= size) {
- return false;
- }
-
- tinyexr::swap4(&y);
- tinyexr::swap4(&data_len);
-
- (*offsets)[i] = offset;
-
- marker += data_len + 8; // 8 = 4 bytes(y) + 4 bytes(data_len)
- }
-
- return true;
- }
-
-
- static int FloorLog2(unsigned x) {
- //
- // For x > 0, floorLog2(y) returns floor(log(x)/log(2)).
- //
- int y = 0;
- while (x > 1) {
- y += 1;
- x >>= 1u;
- }
- return y;
- }
-
-
- static int CeilLog2(unsigned x) {
- //
- // For x > 0, ceilLog2(y) returns ceil(log(x)/log(2)).
- //
- int y = 0;
- int r = 0;
- while (x > 1) {
- if (x & 1)
- r = 1;
-
- y += 1;
- x >>= 1u;
- }
- return y + r;
- }
-
- static int RoundLog2(int x, int tile_rounding_mode) {
- return (tile_rounding_mode == TINYEXR_TILE_ROUND_DOWN) ? FloorLog2(static_cast<unsigned>(x)) : CeilLog2(static_cast<unsigned>(x));
- }
-
- static int CalculateNumXLevels(const EXRHeader* exr_header) {
- int min_x = exr_header->data_window.min_x;
- int max_x = exr_header->data_window.max_x;
- int min_y = exr_header->data_window.min_y;
- int max_y = exr_header->data_window.max_y;
-
- int num = 0;
- switch (exr_header->tile_level_mode) {
- case TINYEXR_TILE_ONE_LEVEL:
-
- num = 1;
- break;
-
- case TINYEXR_TILE_MIPMAP_LEVELS:
-
- {
- int w = max_x - min_x + 1;
- int h = max_y - min_y + 1;
- num = RoundLog2(std::max(w, h), exr_header->tile_rounding_mode) + 1;
- }
- break;
-
- case TINYEXR_TILE_RIPMAP_LEVELS:
-
- {
- int w = max_x - min_x + 1;
- num = RoundLog2(w, exr_header->tile_rounding_mode) + 1;
- }
- break;
-
- default:
-
- assert(false);
- }
-
- return num;
- }
-
- static int CalculateNumYLevels(const EXRHeader* exr_header) {
- int min_x = exr_header->data_window.min_x;
- int max_x = exr_header->data_window.max_x;
- int min_y = exr_header->data_window.min_y;
- int max_y = exr_header->data_window.max_y;
- int num = 0;
-
- switch (exr_header->tile_level_mode) {
- case TINYEXR_TILE_ONE_LEVEL:
-
- num = 1;
- break;
-
- case TINYEXR_TILE_MIPMAP_LEVELS:
-
- {
- int w = max_x - min_x + 1;
- int h = max_y - min_y + 1;
- num = RoundLog2(std::max(w, h), exr_header->tile_rounding_mode) + 1;
- }
- break;
-
- case TINYEXR_TILE_RIPMAP_LEVELS:
-
- {
- int h = max_y - min_y + 1;
- num = RoundLog2(h, exr_header->tile_rounding_mode) + 1;
- }
- break;
-
- default:
-
- assert(false);
- }
-
- return num;
- }
-
- static void CalculateNumTiles(std::vector<int>& numTiles,
- int toplevel_size,
- int size,
- int tile_rounding_mode) {
- for (unsigned i = 0; i < numTiles.size(); i++) {
- int l = LevelSize(toplevel_size, int(i), tile_rounding_mode);
- assert(l <= std::numeric_limits<int>::max() - size + 1);
-
- numTiles[i] = (l + size - 1) / size;
- }
- }
-
- static void PrecalculateTileInfo(std::vector<int>& num_x_tiles,
- std::vector<int>& num_y_tiles,
- const EXRHeader* exr_header) {
- int min_x = exr_header->data_window.min_x;
- int max_x = exr_header->data_window.max_x;
- int min_y = exr_header->data_window.min_y;
- int max_y = exr_header->data_window.max_y;
-
- int num_x_levels = CalculateNumXLevels(exr_header);
- int num_y_levels = CalculateNumYLevels(exr_header);
-
- num_x_tiles.resize(size_t(num_x_levels));
- num_y_tiles.resize(size_t(num_y_levels));
-
- CalculateNumTiles(num_x_tiles,
- max_x - min_x + 1,
- exr_header->tile_size_x,
- exr_header->tile_rounding_mode);
-
- CalculateNumTiles(num_y_tiles,
- max_y - min_y + 1,
- exr_header->tile_size_y,
- exr_header->tile_rounding_mode);
- }
-
- static void InitSingleResolutionOffsets(OffsetData& offset_data, size_t num_blocks) {
- offset_data.offsets.resize(1);
- offset_data.offsets[0].resize(1);
- offset_data.offsets[0][0].resize(num_blocks);
- offset_data.num_x_levels = 1;
- offset_data.num_y_levels = 1;
- }
-
- // Return sum of tile blocks.
- static int InitTileOffsets(OffsetData& offset_data,
- const EXRHeader* exr_header,
- const std::vector<int>& num_x_tiles,
- const std::vector<int>& num_y_tiles) {
- int num_tile_blocks = 0;
- offset_data.num_x_levels = static_cast<int>(num_x_tiles.size());
- offset_data.num_y_levels = static_cast<int>(num_y_tiles.size());
- switch (exr_header->tile_level_mode) {
- case TINYEXR_TILE_ONE_LEVEL:
- case TINYEXR_TILE_MIPMAP_LEVELS:
- assert(offset_data.num_x_levels == offset_data.num_y_levels);
- offset_data.offsets.resize(size_t(offset_data.num_x_levels));
-
- for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
- offset_data.offsets[l].resize(size_t(num_y_tiles[l]));
-
- for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
- offset_data.offsets[l][dy].resize(size_t(num_x_tiles[l]));
- num_tile_blocks += num_x_tiles[l];
- }
- }
- break;
-
- case TINYEXR_TILE_RIPMAP_LEVELS:
-
- offset_data.offsets.resize(static_cast<size_t>(offset_data.num_x_levels) * static_cast<size_t>(offset_data.num_y_levels));
-
- for (int ly = 0; ly < offset_data.num_y_levels; ++ly) {
- for (int lx = 0; lx < offset_data.num_x_levels; ++lx) {
- int l = ly * offset_data.num_x_levels + lx;
- offset_data.offsets[size_t(l)].resize(size_t(num_y_tiles[size_t(ly)]));
-
- for (size_t dy = 0; dy < offset_data.offsets[size_t(l)].size(); ++dy) {
- offset_data.offsets[size_t(l)][dy].resize(size_t(num_x_tiles[size_t(lx)]));
- num_tile_blocks += num_x_tiles[size_t(lx)];
- }
- }
- }
- break;
-
- default:
- assert(false);
- }
- return num_tile_blocks;
- }
-
- static bool IsAnyOffsetsAreInvalid(const OffsetData& offset_data) {
- for (unsigned int l = 0; l < offset_data.offsets.size(); ++l)
- for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy)
- for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx)
- if (reinterpret_cast<const tinyexr::tinyexr_int64&>(offset_data.offsets[l][dy][dx]) <= 0)
- return true;
-
- return false;
- }
-
- static bool isValidTile(const EXRHeader* exr_header,
- const OffsetData& offset_data,
- int dx, int dy, int lx, int ly) {
- if (lx < 0 || ly < 0 || dx < 0 || dy < 0) return false;
- int num_x_levels = offset_data.num_x_levels;
- int num_y_levels = offset_data.num_y_levels;
- switch (exr_header->tile_level_mode) {
- case TINYEXR_TILE_ONE_LEVEL:
-
- if (lx == 0 &&
- ly == 0 &&
- offset_data.offsets.size() > 0 &&
- offset_data.offsets[0].size() > static_cast<size_t>(dy) &&
- offset_data.offsets[0][size_t(dy)].size() > static_cast<size_t>(dx)) {
- return true;
- }
-
- break;
-
- case TINYEXR_TILE_MIPMAP_LEVELS:
-
- if (lx < num_x_levels &&
- ly < num_y_levels &&
- offset_data.offsets.size() > static_cast<size_t>(lx) &&
- offset_data.offsets[size_t(lx)].size() > static_cast<size_t>(dy) &&
- offset_data.offsets[size_t(lx)][size_t(dy)].size() > static_cast<size_t>(dx)) {
- return true;
- }
-
- break;
-
- case TINYEXR_TILE_RIPMAP_LEVELS:
- {
- size_t idx = static_cast<size_t>(lx) + static_cast<size_t>(ly)* static_cast<size_t>(num_x_levels);
- if (lx < num_x_levels &&
- ly < num_y_levels &&
- (offset_data.offsets.size() > idx) &&
- offset_data.offsets[idx].size() > static_cast<size_t>(dy) &&
- offset_data.offsets[idx][size_t(dy)].size() > static_cast<size_t>(dx)) {
- return true;
- }
- }
-
- break;
-
- default:
-
- return false;
- }
-
- return false;
- }
-
- static void ReconstructTileOffsets(OffsetData& offset_data,
- const EXRHeader* exr_header,
- const unsigned char* head, const unsigned char* marker, const size_t /*size*/,
- bool isMultiPartFile,
- bool isDeep) {
- int numXLevels = offset_data.num_x_levels;
- for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
- for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
- for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
- tinyexr::tinyexr_uint64 tileOffset = tinyexr::tinyexr_uint64(marker - head);
-
- if (isMultiPartFile) {
- //int partNumber;
- marker += sizeof(int);
- }
-
- int tileX;
- memcpy(&tileX, marker, sizeof(int));
- tinyexr::swap4(&tileX);
- marker += sizeof(int);
-
- int tileY;
- memcpy(&tileY, marker, sizeof(int));
- tinyexr::swap4(&tileY);
- marker += sizeof(int);
-
- int levelX;
- memcpy(&levelX, marker, sizeof(int));
- tinyexr::swap4(&levelX);
- marker += sizeof(int);
-
- int levelY;
- memcpy(&levelY, marker, sizeof(int));
- tinyexr::swap4(&levelY);
- marker += sizeof(int);
-
- if (isDeep) {
- tinyexr::tinyexr_int64 packed_offset_table_size;
- memcpy(&packed_offset_table_size, marker, sizeof(tinyexr::tinyexr_int64));
- tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_offset_table_size));
- marker += sizeof(tinyexr::tinyexr_int64);
-
- tinyexr::tinyexr_int64 packed_sample_size;
- memcpy(&packed_sample_size, marker, sizeof(tinyexr::tinyexr_int64));
- tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_sample_size));
- marker += sizeof(tinyexr::tinyexr_int64);
-
- // next Int64 is unpacked sample size - skip that too
- marker += packed_offset_table_size + packed_sample_size + 8;
-
- } else {
-
- int dataSize;
- memcpy(&dataSize, marker, sizeof(int));
- tinyexr::swap4(&dataSize);
- marker += sizeof(int);
- marker += dataSize;
- }
-
- if (!isValidTile(exr_header, offset_data,
- tileX, tileY, levelX, levelY))
- return;
-
- int level_idx = LevelIndex(levelX, levelY, exr_header->tile_level_mode, numXLevels);
- offset_data.offsets[size_t(level_idx)][size_t(tileY)][size_t(tileX)] = tileOffset;
- }
- }
- }
- }
-
- // marker output is also
- static int ReadOffsets(OffsetData& offset_data,
- const unsigned char* head,
- const unsigned char*& marker,
- const size_t size,
- const char** err) {
- for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
- for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
- for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
- tinyexr::tinyexr_uint64 offset;
- if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
- tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
- tinyexr::swap8(&offset);
- if (offset >= size) {
- tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- marker += sizeof(tinyexr::tinyexr_uint64); // = 8
- offset_data.offsets[l][dy][dx] = offset;
- }
- }
- }
- return TINYEXR_SUCCESS;
- }
-
- static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header,
- const unsigned char *head,
- const unsigned char *marker, const size_t size,
- const char **err) {
- if (exr_image == NULL || exr_header == NULL || head == NULL ||
- marker == NULL || (size <= tinyexr::kEXRVersionSize)) {
- tinyexr::SetErrorMessage("Invalid argument for DecodeEXRImage().", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- int num_scanline_blocks = 1;
- if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
- num_scanline_blocks = 16;
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
- num_scanline_blocks = 32;
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- num_scanline_blocks = 16;
- }
-
- if (exr_header->data_window.max_x < exr_header->data_window.min_x ||
- exr_header->data_window.max_x - exr_header->data_window.min_x ==
- std::numeric_limits<int>::max()) {
- // Issue 63
- tinyexr::SetErrorMessage("Invalid data width value", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- int data_width =
- exr_header->data_window.max_x - exr_header->data_window.min_x + 1;
-
- if (exr_header->data_window.max_y < exr_header->data_window.min_y ||
- exr_header->data_window.max_y - exr_header->data_window.min_y ==
- std::numeric_limits<int>::max()) {
- tinyexr::SetErrorMessage("Invalid data height value", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- int data_height =
- exr_header->data_window.max_y - exr_header->data_window.min_y + 1;
-
- // Do not allow too large data_width and data_height. header invalid?
- {
- if (data_width > TINYEXR_DIMENSION_THRESHOLD) {
- tinyexr::SetErrorMessage("data width too large.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- if (data_height > TINYEXR_DIMENSION_THRESHOLD) {
- tinyexr::SetErrorMessage("data height too large.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- }
-
- if (exr_header->tiled) {
- if (exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) {
- tinyexr::SetErrorMessage("tile width too large.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- if (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD) {
- tinyexr::SetErrorMessage("tile height too large.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- }
-
- // Read offset tables.
- OffsetData offset_data;
- size_t num_blocks = 0;
- // For a multi-resolution image, the size of the offset table will be calculated from the other attributes of the header.
- // If chunk_count > 0 then chunk_count must be equal to the calculated tile count.
- if (exr_header->tiled) {
- {
- std::vector<int> num_x_tiles, num_y_tiles;
- PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_header);
- num_blocks = size_t(InitTileOffsets(offset_data, exr_header, num_x_tiles, num_y_tiles));
- if (exr_header->chunk_count > 0) {
- if (exr_header->chunk_count != static_cast<int>(num_blocks)) {
- tinyexr::SetErrorMessage("Invalid offset table size.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- }
- }
-
- int ret = ReadOffsets(offset_data, head, marker, size, err);
- if (ret != TINYEXR_SUCCESS) return ret;
- if (IsAnyOffsetsAreInvalid(offset_data)) {
- ReconstructTileOffsets(offset_data, exr_header,
- head, marker, size,
- exr_header->multipart, exr_header->non_image);
- }
- } else if (exr_header->chunk_count > 0) {
- // Use `chunkCount` attribute.
- num_blocks = static_cast<size_t>(exr_header->chunk_count);
- InitSingleResolutionOffsets(offset_data, num_blocks);
- } else {
- num_blocks = static_cast<size_t>(data_height) /
- static_cast<size_t>(num_scanline_blocks);
- if (num_blocks * static_cast<size_t>(num_scanline_blocks) <
- static_cast<size_t>(data_height)) {
- num_blocks++;
- }
-
- InitSingleResolutionOffsets(offset_data, num_blocks);
- }
-
- if (!exr_header->tiled) {
- std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
- for (size_t y = 0; y < num_blocks; y++) {
- tinyexr::tinyexr_uint64 offset;
- // Issue #81
- if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
- tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
- tinyexr::swap8(&offset);
- if (offset >= size) {
- tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- marker += sizeof(tinyexr::tinyexr_uint64); // = 8
- offsets[y] = offset;
- }
-
- // If line offsets are invalid, we try to reconstruct it.
- // See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details.
- for (size_t y = 0; y < num_blocks; y++) {
- if (offsets[y] <= 0) {
- // TODO(syoyo) Report as warning?
- // if (err) {
- // stringstream ss;
- // ss << "Incomplete lineOffsets." << std::endl;
- // (*err) += ss.str();
- //}
- bool ret =
- ReconstructLineOffsets(&offsets, num_blocks, head, marker, size);
- if (ret) {
- // OK
- break;
- } else {
- tinyexr::SetErrorMessage(
- "Cannot reconstruct lineOffset table in DecodeEXRImage.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- }
- }
- }
-
- {
- std::string e;
- int ret = DecodeChunk(exr_image, exr_header, offset_data, head, size, &e);
-
- if (ret != TINYEXR_SUCCESS) {
- if (!e.empty()) {
- tinyexr::SetErrorMessage(e, err);
- }
-
- #if 1
- FreeEXRImage(exr_image);
- #else
- // release memory(if exists)
- if ((exr_header->num_channels > 0) && exr_image && exr_image->images) {
- for (size_t c = 0; c < size_t(exr_header->num_channels); c++) {
- if (exr_image->images[c]) {
- free(exr_image->images[c]);
- exr_image->images[c] = NULL;
- }
- }
- free(exr_image->images);
- exr_image->images = NULL;
- }
- #endif
- }
-
- return ret;
- }
- }
-
- static void GetLayers(const EXRHeader &exr_header,
- std::vector<std::string> &layer_names) {
- // Naive implementation
- // Group channels by layers
- // go over all channel names, split by periods
- // collect unique names
- layer_names.clear();
- for (int c = 0; c < exr_header.num_channels; c++) {
- std::string full_name(exr_header.channels[c].name);
- const size_t pos = full_name.find_last_of('.');
- if (pos != std::string::npos && pos != 0 && pos + 1 < full_name.size()) {
- full_name.erase(pos);
- if (std::find(layer_names.begin(), layer_names.end(), full_name) ==
- layer_names.end())
- layer_names.push_back(full_name);
- }
- }
- }
-
- struct LayerChannel {
- explicit LayerChannel(size_t i, std::string n) : index(i), name(n) {}
- size_t index;
- std::string name;
- };
-
- static void ChannelsInLayer(const EXRHeader &exr_header,
- const std::string &layer_name,
- std::vector<LayerChannel> &channels) {
- channels.clear();
- for (int c = 0; c < exr_header.num_channels; c++) {
- std::string ch_name(exr_header.channels[c].name);
- if (layer_name.empty()) {
- const size_t pos = ch_name.find_last_of('.');
- if (pos != std::string::npos && pos < ch_name.size()) {
- ch_name = ch_name.substr(pos + 1);
- }
- } else {
- const size_t pos = ch_name.find(layer_name + '.');
- if (pos == std::string::npos) continue;
- if (pos == 0) {
- ch_name = ch_name.substr(layer_name.size() + 1);
- }
- }
- LayerChannel ch(size_t(c), ch_name);
- channels.push_back(ch);
- }
- }
-
- } // namespace tinyexr
-
- int EXRLayers(const char *filename, const char **layer_names[], int *num_layers,
- const char **err) {
- EXRVersion exr_version;
- EXRHeader exr_header;
- InitEXRHeader(&exr_header);
-
- {
- int ret = ParseEXRVersionFromFile(&exr_version, filename);
- if (ret != TINYEXR_SUCCESS) {
- tinyexr::SetErrorMessage("Invalid EXR header.", err);
- return ret;
- }
-
- if (exr_version.multipart || exr_version.non_image) {
- tinyexr::SetErrorMessage(
- "Loading multipart or DeepImage is not supported in LoadEXR() API",
- err);
- return TINYEXR_ERROR_INVALID_DATA; // @fixme.
- }
- }
-
- int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err);
- if (ret != TINYEXR_SUCCESS) {
- FreeEXRHeader(&exr_header);
- return ret;
- }
-
- std::vector<std::string> layer_vec;
- tinyexr::GetLayers(exr_header, layer_vec);
-
- (*num_layers) = int(layer_vec.size());
- (*layer_names) = static_cast<const char **>(
- malloc(sizeof(const char *) * static_cast<size_t>(layer_vec.size())));
- for (size_t c = 0; c < static_cast<size_t>(layer_vec.size()); c++) {
- #ifdef _MSC_VER
- (*layer_names)[c] = _strdup(layer_vec[c].c_str());
- #else
- (*layer_names)[c] = strdup(layer_vec[c].c_str());
- #endif
- }
-
- FreeEXRHeader(&exr_header);
- return TINYEXR_SUCCESS;
- }
-
- int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
- const char **err) {
- return LoadEXRWithLayer(out_rgba, width, height, filename,
- /* layername */ NULL, err);
- }
-
- int LoadEXRWithLayer(float **out_rgba, int *width, int *height,
- const char *filename, const char *layername,
- const char **err) {
- if (out_rgba == NULL) {
- tinyexr::SetErrorMessage("Invalid argument for LoadEXR()", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- EXRVersion exr_version;
- EXRImage exr_image;
- EXRHeader exr_header;
- InitEXRHeader(&exr_header);
- InitEXRImage(&exr_image);
-
- {
- int ret = ParseEXRVersionFromFile(&exr_version, filename);
- if (ret != TINYEXR_SUCCESS) {
- std::stringstream ss;
- ss << "Failed to open EXR file or read version info from EXR file. code("
- << ret << ")";
- tinyexr::SetErrorMessage(ss.str(), err);
- return ret;
- }
-
- if (exr_version.multipart || exr_version.non_image) {
- tinyexr::SetErrorMessage(
- "Loading multipart or DeepImage is not supported in LoadEXR() API",
- err);
- return TINYEXR_ERROR_INVALID_DATA; // @fixme.
- }
- }
-
- {
- int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err);
- if (ret != TINYEXR_SUCCESS) {
- FreeEXRHeader(&exr_header);
- return ret;
- }
- }
-
- // Read HALF channel as FLOAT.
- for (int i = 0; i < exr_header.num_channels; i++) {
- if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) {
- exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
- }
- }
-
- // TODO: Probably limit loading to layers (channels) selected by layer index
- {
- int ret = LoadEXRImageFromFile(&exr_image, &exr_header, filename, err);
- if (ret != TINYEXR_SUCCESS) {
- FreeEXRHeader(&exr_header);
- return ret;
- }
- }
-
- // RGBA
- int idxR = -1;
- int idxG = -1;
- int idxB = -1;
- int idxA = -1;
-
- std::vector<std::string> layer_names;
- tinyexr::GetLayers(exr_header, layer_names);
-
- std::vector<tinyexr::LayerChannel> channels;
- tinyexr::ChannelsInLayer(
- exr_header, layername == NULL ? "" : std::string(layername), channels);
-
- if (channels.size() < 1) {
- tinyexr::SetErrorMessage("Layer Not Found", err);
- FreeEXRHeader(&exr_header);
- FreeEXRImage(&exr_image);
- return TINYEXR_ERROR_LAYER_NOT_FOUND;
- }
-
- size_t ch_count = channels.size() < 4 ? channels.size() : 4;
- for (size_t c = 0; c < ch_count; c++) {
- const tinyexr::LayerChannel &ch = channels[c];
-
- if (ch.name == "R") {
- idxR = int(ch.index);
- } else if (ch.name == "G") {
- idxG = int(ch.index);
- } else if (ch.name == "B") {
- idxB = int(ch.index);
- } else if (ch.name == "A") {
- idxA = int(ch.index);
- }
- }
-
- if (channels.size() == 1) {
- int chIdx = int(channels.front().index);
- // Grayscale channel only.
-
- (*out_rgba) = reinterpret_cast<float *>(
- malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
- static_cast<size_t>(exr_image.height)));
-
- if (exr_header.tiled) {
- for (int it = 0; it < exr_image.num_tiles; it++) {
- for (int j = 0; j < exr_header.tile_size_y; j++) {
- for (int i = 0; i < exr_header.tile_size_x; i++) {
- const int ii = exr_image.tiles[it].offset_x *
- static_cast<int>(exr_header.tile_size_x) +
- i;
- const int jj = exr_image.tiles[it].offset_y *
- static_cast<int>(exr_header.tile_size_y) +
- j;
- const int idx = ii + jj * static_cast<int>(exr_image.width);
-
- // out of region check.
- if (ii >= exr_image.width) {
- continue;
- }
- if (jj >= exr_image.height) {
- continue;
- }
- const int srcIdx = i + j * exr_header.tile_size_x;
- unsigned char **src = exr_image.tiles[it].images;
- (*out_rgba)[4 * idx + 0] =
- reinterpret_cast<float **>(src)[chIdx][srcIdx];
- (*out_rgba)[4 * idx + 1] =
- reinterpret_cast<float **>(src)[chIdx][srcIdx];
- (*out_rgba)[4 * idx + 2] =
- reinterpret_cast<float **>(src)[chIdx][srcIdx];
- (*out_rgba)[4 * idx + 3] =
- reinterpret_cast<float **>(src)[chIdx][srcIdx];
- }
- }
- }
- } else {
- for (int i = 0; i < exr_image.width * exr_image.height; i++) {
- const float val =
- reinterpret_cast<float **>(exr_image.images)[chIdx][i];
- (*out_rgba)[4 * i + 0] = val;
- (*out_rgba)[4 * i + 1] = val;
- (*out_rgba)[4 * i + 2] = val;
- (*out_rgba)[4 * i + 3] = val;
- }
- }
- } else {
- // Assume RGB(A)
-
- if (idxR == -1) {
- tinyexr::SetErrorMessage("R channel not found", err);
-
- FreeEXRHeader(&exr_header);
- FreeEXRImage(&exr_image);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- if (idxG == -1) {
- tinyexr::SetErrorMessage("G channel not found", err);
- FreeEXRHeader(&exr_header);
- FreeEXRImage(&exr_image);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- if (idxB == -1) {
- tinyexr::SetErrorMessage("B channel not found", err);
- FreeEXRHeader(&exr_header);
- FreeEXRImage(&exr_image);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- (*out_rgba) = reinterpret_cast<float *>(
- malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
- static_cast<size_t>(exr_image.height)));
- if (exr_header.tiled) {
- for (int it = 0; it < exr_image.num_tiles; it++) {
- for (int j = 0; j < exr_header.tile_size_y; j++) {
- for (int i = 0; i < exr_header.tile_size_x; i++) {
- const int ii =
- exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
- const int jj =
- exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
- const int idx = ii + jj * exr_image.width;
-
- // out of region check.
- if (ii >= exr_image.width) {
- continue;
- }
- if (jj >= exr_image.height) {
- continue;
- }
- const int srcIdx = i + j * exr_header.tile_size_x;
- unsigned char **src = exr_image.tiles[it].images;
- (*out_rgba)[4 * idx + 0] =
- reinterpret_cast<float **>(src)[idxR][srcIdx];
- (*out_rgba)[4 * idx + 1] =
- reinterpret_cast<float **>(src)[idxG][srcIdx];
- (*out_rgba)[4 * idx + 2] =
- reinterpret_cast<float **>(src)[idxB][srcIdx];
- if (idxA != -1) {
- (*out_rgba)[4 * idx + 3] =
- reinterpret_cast<float **>(src)[idxA][srcIdx];
- } else {
- (*out_rgba)[4 * idx + 3] = 1.0;
- }
- }
- }
- }
- } else {
- for (int i = 0; i < exr_image.width * exr_image.height; i++) {
- (*out_rgba)[4 * i + 0] =
- reinterpret_cast<float **>(exr_image.images)[idxR][i];
- (*out_rgba)[4 * i + 1] =
- reinterpret_cast<float **>(exr_image.images)[idxG][i];
- (*out_rgba)[4 * i + 2] =
- reinterpret_cast<float **>(exr_image.images)[idxB][i];
- if (idxA != -1) {
- (*out_rgba)[4 * i + 3] =
- reinterpret_cast<float **>(exr_image.images)[idxA][i];
- } else {
- (*out_rgba)[4 * i + 3] = 1.0;
- }
- }
- }
- }
-
- (*width) = exr_image.width;
- (*height) = exr_image.height;
-
- FreeEXRHeader(&exr_header);
- FreeEXRImage(&exr_image);
-
- return TINYEXR_SUCCESS;
- }
-
- int IsEXR(const char *filename) {
- EXRVersion exr_version;
-
- int ret = ParseEXRVersionFromFile(&exr_version, filename);
- if (ret != TINYEXR_SUCCESS) {
- return ret;
- }
-
- return TINYEXR_SUCCESS;
- }
-
- int ParseEXRHeaderFromMemory(EXRHeader *exr_header, const EXRVersion *version,
- const unsigned char *memory, size_t size,
- const char **err) {
- if (memory == NULL || exr_header == NULL) {
- tinyexr::SetErrorMessage(
- "Invalid argument. `memory` or `exr_header` argument is null in "
- "ParseEXRHeaderFromMemory()",
- err);
-
- // Invalid argument
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- if (size < tinyexr::kEXRVersionSize) {
- tinyexr::SetErrorMessage("Insufficient header/data size.\n", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- const unsigned char *marker = memory + tinyexr::kEXRVersionSize;
- size_t marker_size = size - tinyexr::kEXRVersionSize;
-
- tinyexr::HeaderInfo info;
- info.clear();
-
- int ret;
- {
- std::string err_str;
- ret = ParseEXRHeader(&info, NULL, version, &err_str, marker, marker_size);
-
- if (ret != TINYEXR_SUCCESS) {
- if (err && !err_str.empty()) {
- tinyexr::SetErrorMessage(err_str, err);
- }
- }
- }
-
- {
- std::string warn;
- std::string err_str;
-
- if (!ConvertHeader(exr_header, info, &warn, &err_str)) {
- if (err && !err_str.empty()) {
- tinyexr::SetErrorMessage(err_str, err);
- }
- ret = TINYEXR_ERROR_INVALID_HEADER;
- }
- }
-
- exr_header->multipart = version->multipart ? 1 : 0;
- exr_header->non_image = version->non_image ? 1 : 0;
-
- return ret;
- }
-
- int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
- const unsigned char *memory, size_t size,
- const char **err) {
- if (out_rgba == NULL || memory == NULL) {
- tinyexr::SetErrorMessage("Invalid argument for LoadEXRFromMemory", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- EXRVersion exr_version;
- EXRImage exr_image;
- EXRHeader exr_header;
-
- InitEXRHeader(&exr_header);
-
- int ret = ParseEXRVersionFromMemory(&exr_version, memory, size);
- if (ret != TINYEXR_SUCCESS) {
- std::stringstream ss;
- ss << "Failed to parse EXR version. code(" << ret << ")";
- tinyexr::SetErrorMessage(ss.str(), err);
- return ret;
- }
-
- ret = ParseEXRHeaderFromMemory(&exr_header, &exr_version, memory, size, err);
- if (ret != TINYEXR_SUCCESS) {
- return ret;
- }
-
- // Read HALF channel as FLOAT.
- for (int i = 0; i < exr_header.num_channels; i++) {
- if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) {
- exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
- }
- }
-
- InitEXRImage(&exr_image);
- ret = LoadEXRImageFromMemory(&exr_image, &exr_header, memory, size, err);
- if (ret != TINYEXR_SUCCESS) {
- return ret;
- }
-
- // RGBA
- int idxR = -1;
- int idxG = -1;
- int idxB = -1;
- int idxA = -1;
- for (int c = 0; c < exr_header.num_channels; c++) {
- if (strcmp(exr_header.channels[c].name, "R") == 0) {
- idxR = c;
- } else if (strcmp(exr_header.channels[c].name, "G") == 0) {
- idxG = c;
- } else if (strcmp(exr_header.channels[c].name, "B") == 0) {
- idxB = c;
- } else if (strcmp(exr_header.channels[c].name, "A") == 0) {
- idxA = c;
- }
- }
-
- // TODO(syoyo): Refactor removing same code as used in LoadEXR().
- if (exr_header.num_channels == 1) {
- // Grayscale channel only.
-
- (*out_rgba) = reinterpret_cast<float *>(
- malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
- static_cast<size_t>(exr_image.height)));
-
- if (exr_header.tiled) {
- for (int it = 0; it < exr_image.num_tiles; it++) {
- for (int j = 0; j < exr_header.tile_size_y; j++) {
- for (int i = 0; i < exr_header.tile_size_x; i++) {
- const int ii =
- exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
- const int jj =
- exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
- const int idx = ii + jj * exr_image.width;
-
- // out of region check.
- if (ii >= exr_image.width) {
- continue;
- }
- if (jj >= exr_image.height) {
- continue;
- }
- const int srcIdx = i + j * exr_header.tile_size_x;
- unsigned char **src = exr_image.tiles[it].images;
- (*out_rgba)[4 * idx + 0] =
- reinterpret_cast<float **>(src)[0][srcIdx];
- (*out_rgba)[4 * idx + 1] =
- reinterpret_cast<float **>(src)[0][srcIdx];
- (*out_rgba)[4 * idx + 2] =
- reinterpret_cast<float **>(src)[0][srcIdx];
- (*out_rgba)[4 * idx + 3] =
- reinterpret_cast<float **>(src)[0][srcIdx];
- }
- }
- }
- } else {
- for (int i = 0; i < exr_image.width * exr_image.height; i++) {
- const float val = reinterpret_cast<float **>(exr_image.images)[0][i];
- (*out_rgba)[4 * i + 0] = val;
- (*out_rgba)[4 * i + 1] = val;
- (*out_rgba)[4 * i + 2] = val;
- (*out_rgba)[4 * i + 3] = val;
- }
- }
-
- } else {
- // TODO(syoyo): Support non RGBA image.
-
- if (idxR == -1) {
- tinyexr::SetErrorMessage("R channel not found", err);
-
- // @todo { free exr_image }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- if (idxG == -1) {
- tinyexr::SetErrorMessage("G channel not found", err);
- // @todo { free exr_image }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- if (idxB == -1) {
- tinyexr::SetErrorMessage("B channel not found", err);
- // @todo { free exr_image }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- (*out_rgba) = reinterpret_cast<float *>(
- malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
- static_cast<size_t>(exr_image.height)));
-
- if (exr_header.tiled) {
- for (int it = 0; it < exr_image.num_tiles; it++) {
- for (int j = 0; j < exr_header.tile_size_y; j++)
- for (int i = 0; i < exr_header.tile_size_x; i++) {
- const int ii =
- exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
- const int jj =
- exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
- const int idx = ii + jj * exr_image.width;
-
- // out of region check.
- if (ii >= exr_image.width) {
- continue;
- }
- if (jj >= exr_image.height) {
- continue;
- }
- const int srcIdx = i + j * exr_header.tile_size_x;
- unsigned char **src = exr_image.tiles[it].images;
- (*out_rgba)[4 * idx + 0] =
- reinterpret_cast<float **>(src)[idxR][srcIdx];
- (*out_rgba)[4 * idx + 1] =
- reinterpret_cast<float **>(src)[idxG][srcIdx];
- (*out_rgba)[4 * idx + 2] =
- reinterpret_cast<float **>(src)[idxB][srcIdx];
- if (idxA != -1) {
- (*out_rgba)[4 * idx + 3] =
- reinterpret_cast<float **>(src)[idxA][srcIdx];
- } else {
- (*out_rgba)[4 * idx + 3] = 1.0;
- }
- }
- }
- } else {
- for (int i = 0; i < exr_image.width * exr_image.height; i++) {
- (*out_rgba)[4 * i + 0] =
- reinterpret_cast<float **>(exr_image.images)[idxR][i];
- (*out_rgba)[4 * i + 1] =
- reinterpret_cast<float **>(exr_image.images)[idxG][i];
- (*out_rgba)[4 * i + 2] =
- reinterpret_cast<float **>(exr_image.images)[idxB][i];
- if (idxA != -1) {
- (*out_rgba)[4 * i + 3] =
- reinterpret_cast<float **>(exr_image.images)[idxA][i];
- } else {
- (*out_rgba)[4 * i + 3] = 1.0;
- }
- }
- }
- }
-
- (*width) = exr_image.width;
- (*height) = exr_image.height;
-
- FreeEXRHeader(&exr_header);
- FreeEXRImage(&exr_image);
-
- return TINYEXR_SUCCESS;
- }
-
- int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *exr_header,
- const char *filename, const char **err) {
- if (exr_image == NULL) {
- tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromFile", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- FILE *fp = NULL;
- #ifdef _WIN32
- #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
- errno_t errcode =
- _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
- if (errcode != 0) {
- tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
- // TODO(syoyo): return wfopen_s erro code
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
- #else
- // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
- fp = fopen(filename, "rb");
- #endif
- #else
- fp = fopen(filename, "rb");
- #endif
- if (!fp) {
- tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
-
- size_t filesize;
- // Compute size
- fseek(fp, 0, SEEK_END);
- filesize = static_cast<size_t>(ftell(fp));
- fseek(fp, 0, SEEK_SET);
-
- if (filesize < 16) {
- tinyexr::SetErrorMessage("File size too short " + std::string(filename),
- err);
- return TINYEXR_ERROR_INVALID_FILE;
- }
-
- std::vector<unsigned char> buf(filesize); // @todo { use mmap }
- {
- size_t ret;
- ret = fread(&buf[0], 1, filesize, fp);
- assert(ret == filesize);
- fclose(fp);
- (void)ret;
- }
-
- return LoadEXRImageFromMemory(exr_image, exr_header, &buf.at(0), filesize,
- err);
- }
-
- int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *exr_header,
- const unsigned char *memory, const size_t size,
- const char **err) {
- if (exr_image == NULL || memory == NULL ||
- (size < tinyexr::kEXRVersionSize)) {
- tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromMemory",
- err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- if (exr_header->header_len == 0) {
- tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- const unsigned char *head = memory;
- const unsigned char *marker = reinterpret_cast<const unsigned char *>(
- memory + exr_header->header_len +
- 8); // +8 for magic number + version header.
- return tinyexr::DecodeEXRImage(exr_image, exr_header, head, marker, size,
- err);
- }
-
- namespace tinyexr
- {
-
- #ifdef __clang__
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wsign-conversion"
- #endif
-
- // out_data must be allocated initially with the block-header size
- // of the current image(-part) type
- static bool EncodePixelData(/* out */ std::vector<unsigned char>& out_data,
- const unsigned char* const* images,
- int compression_type,
- int /*line_order*/,
- int width, // for tiled : tile.width
- int /*height*/, // for tiled : header.tile_size_y
- int x_stride, // for tiled : header.tile_size_x
- int line_no, // for tiled : 0
- int num_lines, // for tiled : tile.height
- size_t pixel_data_size,
- const std::vector<ChannelInfo>& channels,
- const std::vector<size_t>& channel_offset_list,
- const void* compression_param = 0) // zfp compression param
- {
- size_t buf_size = static_cast<size_t>(width) *
- static_cast<size_t>(num_lines) *
- static_cast<size_t>(pixel_data_size);
- //int last2bit = (buf_size & 3);
- // buf_size must be multiple of four
- //if(last2bit) buf_size += 4 - last2bit;
- std::vector<unsigned char> buf(buf_size);
-
- size_t start_y = static_cast<size_t>(line_no);
- for (size_t c = 0; c < channels.size(); c++) {
- if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
- if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- for (int y = 0; y < num_lines; y++) {
- // Assume increasing Y
- float *line_ptr = reinterpret_cast<float *>(&buf.at(
- static_cast<size_t>(pixel_data_size * size_t(y) * size_t(width)) +
- channel_offset_list[c] *
- static_cast<size_t>(width)));
- for (int x = 0; x < width; x++) {
- tinyexr::FP16 h16;
- h16.u = reinterpret_cast<const unsigned short * const *>(
- images)[c][(y + start_y) * size_t(x_stride) + size_t(x)];
-
- tinyexr::FP32 f32 = half_to_float(h16);
-
- tinyexr::swap4(&f32.f);
-
- // line_ptr[x] = f32.f;
- tinyexr::cpy4(line_ptr + x, &(f32.f));
- }
- }
- } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
- for (int y = 0; y < num_lines; y++) {
- // Assume increasing Y
- unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
- &buf.at(static_cast<size_t>(pixel_data_size * y *
- width) +
- channel_offset_list[c] *
- static_cast<size_t>(width)));
- for (int x = 0; x < width; x++) {
- unsigned short val = reinterpret_cast<const unsigned short * const *>(
- images)[c][(y + start_y) * x_stride + x];
-
- tinyexr::swap2(&val);
-
- // line_ptr[x] = val;
- tinyexr::cpy2(line_ptr + x, &val);
- }
- }
- } else {
- assert(0);
- }
-
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
- for (int y = 0; y < num_lines; y++) {
- // Assume increasing Y
- unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
- &buf.at(static_cast<size_t>(pixel_data_size * y *
- width) +
- channel_offset_list[c] *
- static_cast<size_t>(width)));
- for (int x = 0; x < width; x++) {
- tinyexr::FP32 f32;
- f32.f = reinterpret_cast<const float * const *>(
- images)[c][(y + start_y) * x_stride + x];
-
- tinyexr::FP16 h16;
- h16 = float_to_half_full(f32);
-
- tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u));
-
- // line_ptr[x] = h16.u;
- tinyexr::cpy2(line_ptr + x, &(h16.u));
- }
- }
- } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
- for (int y = 0; y < num_lines; y++) {
- // Assume increasing Y
- float *line_ptr = reinterpret_cast<float *>(&buf.at(
- static_cast<size_t>(pixel_data_size * y * width) +
- channel_offset_list[c] *
- static_cast<size_t>(width)));
- for (int x = 0; x < width; x++) {
- float val = reinterpret_cast<const float * const *>(
- images)[c][(y + start_y) * x_stride + x];
-
- tinyexr::swap4(&val);
-
- // line_ptr[x] = val;
- tinyexr::cpy4(line_ptr + x, &val);
- }
- }
- } else {
- assert(0);
- }
- } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
- for (int y = 0; y < num_lines; y++) {
- // Assume increasing Y
- unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at(
- static_cast<size_t>(pixel_data_size * y * width) +
- channel_offset_list[c] * static_cast<size_t>(width)));
- for (int x = 0; x < width; x++) {
- unsigned int val = reinterpret_cast<const unsigned int * const *>(
- images)[c][(y + start_y) * x_stride + x];
-
- tinyexr::swap4(&val);
-
- // line_ptr[x] = val;
- tinyexr::cpy4(line_ptr + x, &val);
- }
- }
- }
- }
-
- if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(uncompressed)
- out_data.insert(out_data.end(), buf.begin(), buf.end());
-
- } else if ((compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
- (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
- #if TINYEXR_USE_MINIZ
- std::vector<unsigned char> block(mz_compressBound(
- static_cast<unsigned long>(buf.size())));
- #elif TINYEXR_USE_STB_ZLIB
- // there is no compressBound() function, so we use a value that
- // is grossly overestimated, but should always work
- std::vector<unsigned char> block(256 + 2 * buf.size());
- #else
- std::vector<unsigned char> block(
- compressBound(static_cast<uLong>(buf.size())));
- #endif
- tinyexr::tinyexr_uint64 outSize = block.size();
-
- tinyexr::CompressZip(&block.at(0), outSize,
- reinterpret_cast<const unsigned char *>(&buf.at(0)),
- static_cast<unsigned long>(buf.size()));
-
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(compressed)
- unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
-
- out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
-
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
- // (buf.size() * 3) / 2 would be enough.
- std::vector<unsigned char> block((buf.size() * 3) / 2);
-
- tinyexr::tinyexr_uint64 outSize = block.size();
-
- tinyexr::CompressRle(&block.at(0), outSize,
- reinterpret_cast<const unsigned char *>(&buf.at(0)),
- static_cast<unsigned long>(buf.size()));
-
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(compressed)
- unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
- out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
-
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
- #if TINYEXR_USE_PIZ
- unsigned int bufLen =
- 8192 + static_cast<unsigned int>(
- 2 * static_cast<unsigned int>(
- buf.size())); // @fixme { compute good bound. }
- std::vector<unsigned char> block(bufLen);
- unsigned int outSize = static_cast<unsigned int>(block.size());
-
- CompressPiz(&block.at(0), &outSize,
- reinterpret_cast<const unsigned char *>(&buf.at(0)),
- buf.size(), channels, width, num_lines);
-
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(compressed)
- unsigned int data_len = outSize;
- out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
-
- #else
- assert(0);
- #endif
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- #if TINYEXR_USE_ZFP
- const ZFPCompressionParam* zfp_compression_param = reinterpret_cast<const ZFPCompressionParam*>(compression_param);
- std::vector<unsigned char> block;
- unsigned int outSize;
-
- tinyexr::CompressZfp(
- &block, &outSize, reinterpret_cast<const float *>(&buf.at(0)),
- width, num_lines, static_cast<int>(channels.size()), *zfp_compression_param);
-
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(compressed)
- unsigned int data_len = outSize;
- out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
-
- #else
- (void)compression_param;
- assert(0);
- #endif
- } else {
- assert(0);
- return false;
- }
-
- return true;
- }
-
- static int EncodeTiledLevel(const EXRImage* level_image, const EXRHeader* exr_header,
- const std::vector<tinyexr::ChannelInfo>& channels,
- std::vector<std::vector<unsigned char> >& data_list,
- size_t start_index, // for data_list
- int num_x_tiles, int num_y_tiles,
- const std::vector<size_t>& channel_offset_list,
- int pixel_data_size,
- const void* compression_param, // must be set if zfp compression is enabled
- std::string* err) {
- int num_tiles = num_x_tiles * num_y_tiles;
- assert(num_tiles == level_image->num_tiles);
-
- if ((exr_header->tile_size_x > level_image->width || exr_header->tile_size_y > level_image->height) &&
- level_image->level_x == 0 && level_image->level_y == 0) {
- if (err) {
- (*err) += "Failed to encode tile data.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- std::atomic<bool> invalid_data(false);
- #else
- bool invalid_data(false);
- #endif
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- std::vector<std::thread> workers;
- std::atomic<int> tile_count(0);
-
- int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
- if (num_threads > int(num_tiles)) {
- num_threads = int(num_tiles);
- }
-
- for (int t = 0; t < num_threads; t++) {
- workers.emplace_back(std::thread([&]() {
- int i = 0;
- while ((i = tile_count++) < num_tiles) {
-
- #else
- // Use signed int since some OpenMP compiler doesn't allow unsigned type for
- // `parallel for`
- #if TINYEXR_USE_OPENMP
- #pragma omp parallel for
- #endif
- for (int i = 0; i < num_tiles; i++) {
-
- #endif
- size_t tile_idx = static_cast<size_t>(i);
- size_t data_idx = tile_idx + start_index;
-
- int x_tile = i % num_x_tiles;
- int y_tile = i / num_x_tiles;
-
- EXRTile& tile = level_image->tiles[tile_idx];
-
- const unsigned char* const* images =
- static_cast<const unsigned char* const*>(tile.images);
-
- data_list[data_idx].resize(5*sizeof(int));
- size_t data_header_size = data_list[data_idx].size();
- bool ret = EncodePixelData(data_list[data_idx],
- images,
- exr_header->compression_type,
- 0, // increasing y
- tile.width,
- exr_header->tile_size_y,
- exr_header->tile_size_x,
- 0,
- tile.height,
- pixel_data_size,
- channels,
- channel_offset_list,
- compression_param);
- if (!ret) {
- invalid_data = true;
- continue;
- }
- assert(data_list[data_idx].size() > data_header_size);
- int data_len = static_cast<int>(data_list[data_idx].size() - data_header_size);
- //tileX, tileY, levelX, levelY // pixel_data_size(int)
- memcpy(&data_list[data_idx][0], &x_tile, sizeof(int));
- memcpy(&data_list[data_idx][4], &y_tile, sizeof(int));
- memcpy(&data_list[data_idx][8], &level_image->level_x, sizeof(int));
- memcpy(&data_list[data_idx][12], &level_image->level_y, sizeof(int));
- memcpy(&data_list[data_idx][16], &data_len, sizeof(int));
-
- swap4(reinterpret_cast<int*>(&data_list[data_idx][0]));
- swap4(reinterpret_cast<int*>(&data_list[data_idx][4]));
- swap4(reinterpret_cast<int*>(&data_list[data_idx][8]));
- swap4(reinterpret_cast<int*>(&data_list[data_idx][12]));
- swap4(reinterpret_cast<int*>(&data_list[data_idx][16]));
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- }
- }));
- }
-
- for (auto &t : workers) {
- t.join();
- }
- #else
- } // omp parallel
- #endif
-
- if (invalid_data) {
- if (err) {
- (*err) += "Failed to encode tile data.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
- return TINYEXR_SUCCESS;
- }
-
- static int NumScanlines(int compression_type) {
- int num_scanlines = 1;
- if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
- num_scanlines = 16;
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
- num_scanlines = 32;
- } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- num_scanlines = 16;
- }
- return num_scanlines;
- }
-
- static int EncodeChunk(const EXRImage* exr_image, const EXRHeader* exr_header,
- const std::vector<ChannelInfo>& channels,
- int num_blocks,
- tinyexr_uint64 chunk_offset, // starting offset of current chunk
- bool is_multipart,
- OffsetData& offset_data, // output block offsets, must be initialized
- std::vector<std::vector<unsigned char> >& data_list, // output
- tinyexr_uint64& total_size, // output: ending offset of current chunk
- std::string* err) {
- int num_scanlines = NumScanlines(exr_header->compression_type);
-
- data_list.resize(num_blocks);
-
- std::vector<size_t> channel_offset_list(
- static_cast<size_t>(exr_header->num_channels));
-
- int pixel_data_size = 0;
- {
- size_t channel_offset = 0;
- for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
- channel_offset_list[c] = channel_offset;
- if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
- pixel_data_size += sizeof(unsigned short);
- channel_offset += sizeof(unsigned short);
- } else if (channels[c].requested_pixel_type ==
- TINYEXR_PIXELTYPE_FLOAT) {
- pixel_data_size += sizeof(float);
- channel_offset += sizeof(float);
- } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_UINT) {
- pixel_data_size += sizeof(unsigned int);
- channel_offset += sizeof(unsigned int);
- } else {
- assert(0);
- }
- }
- }
-
- const void* compression_param = 0;
- #if TINYEXR_USE_ZFP
- tinyexr::ZFPCompressionParam zfp_compression_param;
-
- // Use ZFP compression parameter from custom attributes(if such a parameter
- // exists)
- {
- std::string e;
- bool ret = tinyexr::FindZFPCompressionParam(
- &zfp_compression_param, exr_header->custom_attributes,
- exr_header->num_custom_attributes, &e);
-
- if (!ret) {
- // Use predefined compression parameter.
- zfp_compression_param.type = 0;
- zfp_compression_param.rate = 2;
- }
- compression_param = &zfp_compression_param;
- }
- #endif
-
- tinyexr_uint64 offset = chunk_offset;
- tinyexr_uint64 doffset = is_multipart ? 4u : 0u;
-
- if (exr_image->tiles) {
- const EXRImage* level_image = exr_image;
- size_t block_idx = 0;
- //tinyexr::tinyexr_uint64 block_data_size = 0;
- int num_levels = (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ?
- offset_data.num_x_levels : (offset_data.num_x_levels * offset_data.num_y_levels);
- for (int level_index = 0; level_index < num_levels; ++level_index) {
- if (!level_image) {
- if (err) {
- (*err) += "Invalid number of tiled levels for EncodeChunk\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- int level_index_from_image = LevelIndex(level_image->level_x, level_image->level_y,
- exr_header->tile_level_mode, offset_data.num_x_levels);
- if (level_index_from_image != level_index) {
- if (err) {
- (*err) += "Incorrect level ordering in tiled image\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
- int num_y_tiles = int(offset_data.offsets[level_index].size());
- assert(num_y_tiles);
- int num_x_tiles = int(offset_data.offsets[level_index][0].size());
- assert(num_x_tiles);
-
- std::string e;
- int ret = EncodeTiledLevel(level_image,
- exr_header,
- channels,
- data_list,
- block_idx,
- num_x_tiles,
- num_y_tiles,
- channel_offset_list,
- pixel_data_size,
- compression_param,
- &e);
- if (ret != TINYEXR_SUCCESS) {
- if (!e.empty() && err) {
- (*err) += e;
- }
- return ret;
- }
-
- for (size_t j = 0; j < static_cast<size_t>(num_y_tiles); ++j)
- for (size_t i = 0; i < static_cast<size_t>(num_x_tiles); ++i) {
- offset_data.offsets[level_index][j][i] = offset;
- swap8(reinterpret_cast<tinyexr_uint64*>(&offset_data.offsets[level_index][j][i]));
- offset += data_list[block_idx].size() + doffset;
- //block_data_size += data_list[block_idx].size();
- ++block_idx;
- }
- level_image = level_image->next_level;
- }
- assert(static_cast<int>(block_idx) == num_blocks);
- total_size = offset;
- } else { // scanlines
- std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
-
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- std::atomic<bool> invalid_data(false);
- std::vector<std::thread> workers;
- std::atomic<int> block_count(0);
-
- int num_threads = std::min(std::max(1, int(std::thread::hardware_concurrency())), num_blocks);
-
- for (int t = 0; t < num_threads; t++) {
- workers.emplace_back(std::thread([&]() {
- int i = 0;
- while ((i = block_count++) < num_blocks) {
-
- #else
- bool invalid_data(false);
- #if TINYEXR_USE_OPENMP
- #pragma omp parallel for
- #endif
- for (int i = 0; i < num_blocks; i++) {
-
- #endif
- int start_y = num_scanlines * i;
- int end_Y = (std::min)(num_scanlines * (i + 1), exr_image->height);
- int num_lines = end_Y - start_y;
-
- const unsigned char* const* images =
- static_cast<const unsigned char* const*>(exr_image->images);
-
- data_list[i].resize(2*sizeof(int));
- size_t data_header_size = data_list[i].size();
-
- bool ret = EncodePixelData(data_list[i],
- images,
- exr_header->compression_type,
- 0, // increasing y
- exr_image->width,
- exr_image->height,
- exr_image->width,
- start_y,
- num_lines,
- pixel_data_size,
- channels,
- channel_offset_list,
- compression_param);
- if (!ret) {
- invalid_data = true;
- continue; // "break" cannot be used with OpenMP
- }
- assert(data_list[i].size() > data_header_size);
- int data_len = static_cast<int>(data_list[i].size() - data_header_size);
- memcpy(&data_list[i][0], &start_y, sizeof(int));
- memcpy(&data_list[i][4], &data_len, sizeof(int));
-
- swap4(reinterpret_cast<int*>(&data_list[i][0]));
- swap4(reinterpret_cast<int*>(&data_list[i][4]));
- #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
- }
- }));
- }
-
- for (auto &t : workers) {
- t.join();
- }
- #else
- } // omp parallel
- #endif
-
- if (invalid_data) {
- if (err) {
- (*err) += "Failed to encode scanline data.\n";
- }
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
- offsets[i] = offset;
- tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i]));
- offset += data_list[i].size() + doffset;
- }
-
- total_size = static_cast<size_t>(offset);
- }
- return TINYEXR_SUCCESS;
- }
-
- // can save a single or multi-part image (no deep* formats)
- static size_t SaveEXRNPartImageToMemory(const EXRImage* exr_images,
- const EXRHeader** exr_headers,
- unsigned int num_parts,
- unsigned char** memory_out, const char** err) {
- if (exr_images == NULL || exr_headers == NULL || num_parts == 0 ||
- memory_out == NULL) {
- SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
- err);
- return 0;
- }
- {
- for (unsigned int i = 0; i < num_parts; ++i) {
- if (exr_headers[i]->compression_type < 0) {
- SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
- err);
- return 0;
- }
- #if !TINYEXR_USE_PIZ
- if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
- SetErrorMessage("PIZ compression is not supported in this build",
- err);
- return 0;
- }
- #endif
- #if !TINYEXR_USE_ZFP
- if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- SetErrorMessage("ZFP compression is not supported in this build",
- err);
- return 0;
- }
- #else
- for (int c = 0; c < exr_header->num_channels; ++c) {
- if (exr_headers[i]->requested_pixel_types[c] != TINYEXR_PIXELTYPE_FLOAT) {
- SetErrorMessage("Pixel type must be FLOAT for ZFP compression",
- err);
- return 0;
- }
- }
- #endif
- }
- }
-
- std::vector<unsigned char> memory;
-
- // Header
- {
- const char header[] = { 0x76, 0x2f, 0x31, 0x01 };
- memory.insert(memory.end(), header, header + 4);
- }
-
- // Version
- // using value from the first header
- int long_name = exr_headers[0]->long_name;
- {
- char marker[] = { 2, 0, 0, 0 };
- /* @todo
- if (exr_header->non_image) {
- marker[1] |= 0x8;
- }
- */
- // tiled
- if (num_parts == 1 && exr_images[0].tiles) {
- marker[1] |= 0x2;
- }
- // long_name
- if (long_name) {
- marker[1] |= 0x4;
- }
- // multipart
- if (num_parts > 1) {
- marker[1] |= 0x10;
- }
- memory.insert(memory.end(), marker, marker + 4);
- }
-
- int total_chunk_count = 0;
- std::vector<int> chunk_count(num_parts);
- std::vector<OffsetData> offset_data(num_parts);
- for (unsigned int i = 0; i < num_parts; ++i) {
- if (!exr_images[i].tiles) {
- int num_scanlines = NumScanlines(exr_headers[i]->compression_type);
- chunk_count[i] =
- (exr_images[i].height + num_scanlines - 1) / num_scanlines;
- InitSingleResolutionOffsets(offset_data[i], chunk_count[i]);
- total_chunk_count += chunk_count[i];
- } else {
- {
- std::vector<int> num_x_tiles, num_y_tiles;
- PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_headers[i]);
- chunk_count[i] =
- InitTileOffsets(offset_data[i], exr_headers[i], num_x_tiles, num_y_tiles);
- total_chunk_count += chunk_count[i];
- }
- }
- }
- // Write attributes to memory buffer.
- std::vector< std::vector<tinyexr::ChannelInfo> > channels(num_parts);
- {
- std::set<std::string> partnames;
- for (unsigned int i = 0; i < num_parts; ++i) {
- //channels
- {
- std::vector<unsigned char> data;
-
- for (int c = 0; c < exr_headers[i]->num_channels; c++) {
- tinyexr::ChannelInfo info;
- info.p_linear = 0;
- info.pixel_type = exr_headers[i]->pixel_types[c];
- info.requested_pixel_type = exr_headers[i]->requested_pixel_types[c];
- info.x_sampling = 1;
- info.y_sampling = 1;
- info.name = std::string(exr_headers[i]->channels[c].name);
- channels[i].push_back(info);
- }
-
- tinyexr::WriteChannelInfo(data, channels[i]);
-
- tinyexr::WriteAttributeToMemory(&memory, "channels", "chlist", &data.at(0),
- static_cast<int>(data.size()));
- }
-
- {
- int comp = exr_headers[i]->compression_type;
- swap4(&comp);
- WriteAttributeToMemory(
- &memory, "compression", "compression",
- reinterpret_cast<const unsigned char*>(&comp), 1);
- }
-
- {
- int data[4] = { 0, 0, exr_images[i].width - 1, exr_images[i].height - 1 };
- swap4(&data[0]);
- swap4(&data[1]);
- swap4(&data[2]);
- swap4(&data[3]);
- WriteAttributeToMemory(
- &memory, "dataWindow", "box2i",
- reinterpret_cast<const unsigned char*>(data), sizeof(int) * 4);
-
- int data0[4] = { 0, 0, exr_images[0].width - 1, exr_images[0].height - 1 };
- swap4(&data0[0]);
- swap4(&data0[1]);
- swap4(&data0[2]);
- swap4(&data0[3]);
- // Note: must be the same across parts (currently, using value from the first header)
- WriteAttributeToMemory(
- &memory, "displayWindow", "box2i",
- reinterpret_cast<const unsigned char*>(data0), sizeof(int) * 4);
- }
-
- {
- unsigned char line_order = 0; // @fixme { read line_order from EXRHeader }
- WriteAttributeToMemory(&memory, "lineOrder", "lineOrder",
- &line_order, 1);
- }
-
- {
- // Note: must be the same across parts
- float aspectRatio = 1.0f;
- swap4(&aspectRatio);
- WriteAttributeToMemory(
- &memory, "pixelAspectRatio", "float",
- reinterpret_cast<const unsigned char*>(&aspectRatio), sizeof(float));
- }
-
- {
- float center[2] = { 0.0f, 0.0f };
- swap4(¢er[0]);
- swap4(¢er[1]);
- WriteAttributeToMemory(
- &memory, "screenWindowCenter", "v2f",
- reinterpret_cast<const unsigned char*>(center), 2 * sizeof(float));
- }
-
- {
- float w = 1.0f;
- swap4(&w);
- WriteAttributeToMemory(&memory, "screenWindowWidth", "float",
- reinterpret_cast<const unsigned char*>(&w),
- sizeof(float));
- }
-
- if (exr_images[i].tiles) {
- unsigned char tile_mode = static_cast<unsigned char>(exr_headers[i]->tile_level_mode & 0x3);
- if (exr_headers[i]->tile_rounding_mode) tile_mode |= (1u << 4u);
- //unsigned char data[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
- unsigned int datai[3] = { 0, 0, 0 };
- unsigned char* data = reinterpret_cast<unsigned char*>(&datai[0]);
- datai[0] = static_cast<unsigned int>(exr_headers[i]->tile_size_x);
- datai[1] = static_cast<unsigned int>(exr_headers[i]->tile_size_y);
- data[8] = tile_mode;
- swap4(reinterpret_cast<unsigned int*>(&data[0]));
- swap4(reinterpret_cast<unsigned int*>(&data[4]));
- WriteAttributeToMemory(
- &memory, "tiles", "tiledesc",
- reinterpret_cast<const unsigned char*>(data), 9);
- }
-
- // must be present for multi-part files - according to spec.
- if (num_parts > 1) {
- // name
- {
- size_t len = 0;
- if ((len = strlen(exr_headers[i]->name)) > 0) {
- partnames.emplace(exr_headers[i]->name);
- if (partnames.size() != i + 1) {
- SetErrorMessage("'name' attributes must be unique for a multi-part file", err);
- return 0;
- }
- WriteAttributeToMemory(
- &memory, "name", "string",
- reinterpret_cast<const unsigned char*>(exr_headers[i]->name),
- static_cast<int>(len));
- } else {
- SetErrorMessage("Invalid 'name' attribute for a multi-part file", err);
- return 0;
- }
- }
- // type
- {
- const char* type = "scanlineimage";
- if (exr_images[i].tiles) type = "tiledimage";
- WriteAttributeToMemory(
- &memory, "type", "string",
- reinterpret_cast<const unsigned char*>(type),
- static_cast<int>(strlen(type)));
- }
- // chunkCount
- {
- WriteAttributeToMemory(
- &memory, "chunkCount", "int",
- reinterpret_cast<const unsigned char*>(&chunk_count[i]),
- 4);
- }
- }
-
- // Custom attributes
- if (exr_headers[i]->num_custom_attributes > 0) {
- for (int j = 0; j < exr_headers[i]->num_custom_attributes; j++) {
- tinyexr::WriteAttributeToMemory(
- &memory, exr_headers[i]->custom_attributes[j].name,
- exr_headers[i]->custom_attributes[j].type,
- reinterpret_cast<const unsigned char*>(
- exr_headers[i]->custom_attributes[j].value),
- exr_headers[i]->custom_attributes[j].size);
- }
- }
-
- { // end of header
- memory.push_back(0);
- }
- }
- }
- if (num_parts > 1) {
- // end of header list
- memory.push_back(0);
- }
-
- tinyexr_uint64 chunk_offset = memory.size() + size_t(total_chunk_count) * sizeof(tinyexr_uint64);
-
- tinyexr_uint64 total_size = 0;
- std::vector< std::vector< std::vector<unsigned char> > > data_lists(num_parts);
- for (unsigned int i = 0; i < num_parts; ++i) {
- std::string e;
- int ret = EncodeChunk(&exr_images[i], exr_headers[i],
- channels[i],
- chunk_count[i],
- // starting offset of current chunk after part-number
- chunk_offset,
- num_parts > 1,
- offset_data[i], // output: block offsets, must be initialized
- data_lists[i], // output
- total_size, // output
- &e);
- if (ret != TINYEXR_SUCCESS) {
- if (!e.empty()) {
- tinyexr::SetErrorMessage(e, err);
- }
- return 0;
- }
- chunk_offset = total_size;
- }
-
- // Allocating required memory
- if (total_size == 0) { // something went wrong
- tinyexr::SetErrorMessage("Output memory size is zero", err);
- return 0;
- }
- (*memory_out) = static_cast<unsigned char*>(malloc(total_size));
-
- // Writing header
- memcpy((*memory_out), &memory[0], memory.size());
- unsigned char* memory_ptr = *memory_out + memory.size();
- size_t sum = memory.size();
-
- // Writing offset data for chunks
- for (unsigned int i = 0; i < num_parts; ++i) {
- if (exr_images[i].tiles) {
- const EXRImage* level_image = &exr_images[i];
- int num_levels = (exr_headers[i]->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ?
- offset_data[i].num_x_levels : (offset_data[i].num_x_levels * offset_data[i].num_y_levels);
- for (int level_index = 0; level_index < num_levels; ++level_index) {
- for (size_t j = 0; j < offset_data[i].offsets[level_index].size(); ++j) {
- size_t num_bytes = sizeof(tinyexr_uint64) * offset_data[i].offsets[level_index][j].size();
- sum += num_bytes;
- assert(sum <= total_size);
- memcpy(memory_ptr,
- reinterpret_cast<unsigned char*>(&offset_data[i].offsets[level_index][j][0]),
- num_bytes);
- memory_ptr += num_bytes;
- }
- level_image = level_image->next_level;
- }
- } else {
- size_t num_bytes = sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(chunk_count[i]);
- sum += num_bytes;
- assert(sum <= total_size);
- std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data[i].offsets[0][0];
- memcpy(memory_ptr, reinterpret_cast<unsigned char*>(&offsets[0]), num_bytes);
- memory_ptr += num_bytes;
- }
- }
-
- // Writing chunk data
- for (unsigned int i = 0; i < num_parts; ++i) {
- for (size_t j = 0; j < static_cast<size_t>(chunk_count[i]); ++j) {
- if (num_parts > 1) {
- sum += 4;
- assert(sum <= total_size);
- unsigned int part_number = i;
- swap4(&part_number);
- memcpy(memory_ptr, &part_number, 4);
- memory_ptr += 4;
- }
- sum += data_lists[i][j].size();
- assert(sum <= total_size);
- memcpy(memory_ptr, &data_lists[i][j][0], data_lists[i][j].size());
- memory_ptr += data_lists[i][j].size();
- }
- }
- assert(sum == total_size);
- return total_size; // OK
- }
-
- #ifdef __clang__
- #pragma clang diagnostic pop
- #endif
-
- } // tinyexr
-
- size_t SaveEXRImageToMemory(const EXRImage* exr_image,
- const EXRHeader* exr_header,
- unsigned char** memory_out, const char** err) {
- return tinyexr::SaveEXRNPartImageToMemory(exr_image, &exr_header, 1, memory_out, err);
- }
-
- int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
- const char *filename, const char **err) {
- if (exr_image == NULL || filename == NULL ||
- exr_header->compression_type < 0) {
- tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToFile", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- #if !TINYEXR_USE_PIZ
- if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
- tinyexr::SetErrorMessage("PIZ compression is not supported in this build",
- err);
- return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
- }
- #endif
-
- #if !TINYEXR_USE_ZFP
- if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- tinyexr::SetErrorMessage("ZFP compression is not supported in this build",
- err);
- return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
- }
- #endif
-
- FILE *fp = NULL;
- #ifdef _WIN32
- #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang
- errno_t errcode =
- _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb");
- if (errcode != 0) {
- tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
- err);
- return TINYEXR_ERROR_CANT_WRITE_FILE;
- }
- #else
- // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
- fp = fopen(filename, "wb");
- #endif
- #else
- fp = fopen(filename, "wb");
- #endif
- if (!fp) {
- tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
- err);
- return TINYEXR_ERROR_CANT_WRITE_FILE;
- }
-
- unsigned char *mem = NULL;
- size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err);
- if (mem_size == 0) {
- return TINYEXR_ERROR_SERIALZATION_FAILED;
- }
-
- size_t written_size = 0;
- if ((mem_size > 0) && mem) {
- written_size = fwrite(mem, 1, mem_size, fp);
- }
- free(mem);
-
- fclose(fp);
-
- if (written_size != mem_size) {
- tinyexr::SetErrorMessage("Cannot write a file", err);
- return TINYEXR_ERROR_CANT_WRITE_FILE;
- }
-
- return TINYEXR_SUCCESS;
- }
-
- size_t SaveEXRMultipartImageToMemory(const EXRImage* exr_images,
- const EXRHeader** exr_headers,
- unsigned int num_parts,
- unsigned char** memory_out, const char** err) {
- if (exr_images == NULL || exr_headers == NULL || num_parts < 2 ||
- memory_out == NULL) {
- tinyexr::SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
- err);
- return 0;
- }
- return tinyexr::SaveEXRNPartImageToMemory(exr_images, exr_headers, num_parts, memory_out, err);
- }
-
- int SaveEXRMultipartImageToFile(const EXRImage* exr_images,
- const EXRHeader** exr_headers,
- unsigned int num_parts,
- const char* filename,
- const char** err) {
- if (exr_images == NULL || exr_headers == NULL || num_parts < 2) {
- tinyexr::SetErrorMessage("Invalid argument for SaveEXRMultipartImageToFile",
- err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- FILE *fp = NULL;
- #ifdef _WIN32
- #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
- errno_t errcode =
- _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb");
- if (errcode != 0) {
- tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
- err);
- return TINYEXR_ERROR_CANT_WRITE_FILE;
- }
- #else
- // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
- fp = fopen(filename, "wb");
- #endif
- #else
- fp = fopen(filename, "wb");
- #endif
- if (!fp) {
- tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
- err);
- return TINYEXR_ERROR_CANT_WRITE_FILE;
- }
-
- unsigned char *mem = NULL;
- size_t mem_size = SaveEXRMultipartImageToMemory(exr_images, exr_headers, num_parts, &mem, err);
- if (mem_size == 0) {
- return TINYEXR_ERROR_SERIALZATION_FAILED;
- }
-
- size_t written_size = 0;
- if ((mem_size > 0) && mem) {
- written_size = fwrite(mem, 1, mem_size, fp);
- }
- free(mem);
-
- fclose(fp);
-
- if (written_size != mem_size) {
- tinyexr::SetErrorMessage("Cannot write a file", err);
- return TINYEXR_ERROR_CANT_WRITE_FILE;
- }
-
- return TINYEXR_SUCCESS;
- }
-
- int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) {
- if (deep_image == NULL) {
- tinyexr::SetErrorMessage("Invalid argument for LoadDeepEXR", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- #ifdef _WIN32
- FILE *fp = NULL;
- #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
- errno_t errcode =
- _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
- if (errcode != 0) {
- tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename),
- err);
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
- #else
- // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
- fp = fopen(filename, "rb");
- #endif
- if (!fp) {
- tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename),
- err);
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
- #else
- FILE *fp = fopen(filename, "rb");
- if (!fp) {
- tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename),
- err);
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
- #endif
-
- size_t filesize;
- // Compute size
- fseek(fp, 0, SEEK_END);
- filesize = static_cast<size_t>(ftell(fp));
- fseek(fp, 0, SEEK_SET);
-
- if (filesize == 0) {
- fclose(fp);
- tinyexr::SetErrorMessage("File size is zero : " + std::string(filename),
- err);
- return TINYEXR_ERROR_INVALID_FILE;
- }
-
- std::vector<char> buf(filesize); // @todo { use mmap }
- {
- size_t ret;
- ret = fread(&buf[0], 1, filesize, fp);
- assert(ret == filesize);
- (void)ret;
- }
- fclose(fp);
-
- const char *head = &buf[0];
- const char *marker = &buf[0];
-
- // Header check.
- {
- const char header[] = {0x76, 0x2f, 0x31, 0x01};
-
- if (memcmp(marker, header, 4) != 0) {
- tinyexr::SetErrorMessage("Invalid magic number", err);
- return TINYEXR_ERROR_INVALID_MAGIC_NUMBER;
- }
- marker += 4;
- }
-
- // Version, scanline.
- {
- // ver 2.0, scanline, deep bit on(0x800)
- // must be [2, 0, 0, 0]
- if (marker[0] != 2 || marker[1] != 8 || marker[2] != 0 || marker[3] != 0) {
- tinyexr::SetErrorMessage("Unsupported version or scanline", err);
- return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
- }
-
- marker += 4;
- }
-
- int dx = -1;
- int dy = -1;
- int dw = -1;
- int dh = -1;
- int num_scanline_blocks = 1; // 16 for ZIP compression.
- int compression_type = -1;
- int num_channels = -1;
- std::vector<tinyexr::ChannelInfo> channels;
-
- // Read attributes
- size_t size = filesize - tinyexr::kEXRVersionSize;
- for (;;) {
- if (0 == size) {
- return TINYEXR_ERROR_INVALID_DATA;
- } else if (marker[0] == '\0') {
- marker++;
- size--;
- break;
- }
-
- std::string attr_name;
- std::string attr_type;
- std::vector<unsigned char> data;
- size_t marker_size;
- if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size,
- marker, size)) {
- std::stringstream ss;
- ss << "Failed to parse attribute\n";
- tinyexr::SetErrorMessage(ss.str(), err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- marker += marker_size;
- size -= marker_size;
-
- if (attr_name.compare("compression") == 0) {
- compression_type = data[0];
- if (compression_type > TINYEXR_COMPRESSIONTYPE_PIZ) {
- std::stringstream ss;
- ss << "Unsupported compression type : " << compression_type;
- tinyexr::SetErrorMessage(ss.str(), err);
- return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
- }
-
- if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
- num_scanline_blocks = 16;
- }
-
- } else if (attr_name.compare("channels") == 0) {
- // name: zero-terminated string, from 1 to 255 bytes long
- // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2
- // pLinear: unsigned char, possible values are 0 and 1
- // reserved: three chars, should be zero
- // xSampling: int
- // ySampling: int
-
- if (!tinyexr::ReadChannelInfo(channels, data)) {
- tinyexr::SetErrorMessage("Failed to parse channel info", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- num_channels = static_cast<int>(channels.size());
-
- if (num_channels < 1) {
- tinyexr::SetErrorMessage("Invalid channels format", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- } else if (attr_name.compare("dataWindow") == 0) {
- memcpy(&dx, &data.at(0), sizeof(int));
- memcpy(&dy, &data.at(4), sizeof(int));
- memcpy(&dw, &data.at(8), sizeof(int));
- memcpy(&dh, &data.at(12), sizeof(int));
- tinyexr::swap4(&dx);
- tinyexr::swap4(&dy);
- tinyexr::swap4(&dw);
- tinyexr::swap4(&dh);
-
- } else if (attr_name.compare("displayWindow") == 0) {
- int x;
- int y;
- int w;
- int h;
- memcpy(&x, &data.at(0), sizeof(int));
- memcpy(&y, &data.at(4), sizeof(int));
- memcpy(&w, &data.at(8), sizeof(int));
- memcpy(&h, &data.at(12), sizeof(int));
- tinyexr::swap4(&x);
- tinyexr::swap4(&y);
- tinyexr::swap4(&w);
- tinyexr::swap4(&h);
- }
- }
-
- assert(dx >= 0);
- assert(dy >= 0);
- assert(dw >= 0);
- assert(dh >= 0);
- assert(num_channels >= 1);
-
- int data_width = dw - dx + 1;
- int data_height = dh - dy + 1;
-
- // Read offset tables.
- int num_blocks = data_height / num_scanline_blocks;
- if (num_blocks * num_scanline_blocks < data_height) {
- num_blocks++;
- }
-
- std::vector<tinyexr::tinyexr_int64> offsets(static_cast<size_t>(num_blocks));
-
- for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) {
- tinyexr::tinyexr_int64 offset;
- memcpy(&offset, marker, sizeof(tinyexr::tinyexr_int64));
- tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offset));
- marker += sizeof(tinyexr::tinyexr_int64); // = 8
- offsets[y] = offset;
- }
-
- #if TINYEXR_USE_PIZ
- if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) ||
- (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) ||
- (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
- (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) ||
- (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ)) {
- #else
- if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) ||
- (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) ||
- (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
- (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
- #endif
- // OK
- } else {
- tinyexr::SetErrorMessage("Unsupported compression format", err);
- return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
- }
-
- deep_image->image = static_cast<float ***>(
- malloc(sizeof(float **) * static_cast<size_t>(num_channels)));
- for (int c = 0; c < num_channels; c++) {
- deep_image->image[c] = static_cast<float **>(
- malloc(sizeof(float *) * static_cast<size_t>(data_height)));
- for (int y = 0; y < data_height; y++) {
- }
- }
-
- deep_image->offset_table = static_cast<int **>(
- malloc(sizeof(int *) * static_cast<size_t>(data_height)));
- for (int y = 0; y < data_height; y++) {
- deep_image->offset_table[y] = static_cast<int *>(
- malloc(sizeof(int) * static_cast<size_t>(data_width)));
- }
-
- for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) {
- const unsigned char *data_ptr =
- reinterpret_cast<const unsigned char *>(head + offsets[y]);
-
- // int: y coordinate
- // int64: packed size of pixel offset table
- // int64: packed size of sample data
- // int64: unpacked size of sample data
- // compressed pixel offset table
- // compressed sample data
- int line_no;
- tinyexr::tinyexr_int64 packedOffsetTableSize;
- tinyexr::tinyexr_int64 packedSampleDataSize;
- tinyexr::tinyexr_int64 unpackedSampleDataSize;
- memcpy(&line_no, data_ptr, sizeof(int));
- memcpy(&packedOffsetTableSize, data_ptr + 4,
- sizeof(tinyexr::tinyexr_int64));
- memcpy(&packedSampleDataSize, data_ptr + 12,
- sizeof(tinyexr::tinyexr_int64));
- memcpy(&unpackedSampleDataSize, data_ptr + 20,
- sizeof(tinyexr::tinyexr_int64));
-
- tinyexr::swap4(&line_no);
- tinyexr::swap8(
- reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedOffsetTableSize));
- tinyexr::swap8(
- reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedSampleDataSize));
- tinyexr::swap8(
- reinterpret_cast<tinyexr::tinyexr_uint64 *>(&unpackedSampleDataSize));
-
- std::vector<int> pixelOffsetTable(static_cast<size_t>(data_width));
-
- // decode pixel offset table.
- {
- unsigned long dstLen =
- static_cast<unsigned long>(pixelOffsetTable.size() * sizeof(int));
- if (!tinyexr::DecompressZip(
- reinterpret_cast<unsigned char *>(&pixelOffsetTable.at(0)),
- &dstLen, data_ptr + 28,
- static_cast<unsigned long>(packedOffsetTableSize))) {
- return false;
- }
-
- assert(dstLen == pixelOffsetTable.size() * sizeof(int));
- for (size_t i = 0; i < static_cast<size_t>(data_width); i++) {
- deep_image->offset_table[y][i] = pixelOffsetTable[i];
- }
- }
-
- std::vector<unsigned char> sample_data(
- static_cast<size_t>(unpackedSampleDataSize));
-
- // decode sample data.
- {
- unsigned long dstLen = static_cast<unsigned long>(unpackedSampleDataSize);
- if (dstLen) {
- if (!tinyexr::DecompressZip(
- reinterpret_cast<unsigned char *>(&sample_data.at(0)), &dstLen,
- data_ptr + 28 + packedOffsetTableSize,
- static_cast<unsigned long>(packedSampleDataSize))) {
- return false;
- }
- assert(dstLen == static_cast<unsigned long>(unpackedSampleDataSize));
- }
- }
-
- // decode sample
- int sampleSize = -1;
- std::vector<int> channel_offset_list(static_cast<size_t>(num_channels));
- {
- int channel_offset = 0;
- for (size_t i = 0; i < static_cast<size_t>(num_channels); i++) {
- channel_offset_list[i] = channel_offset;
- if (channels[i].pixel_type == TINYEXR_PIXELTYPE_UINT) { // UINT
- channel_offset += 4;
- } else if (channels[i].pixel_type == TINYEXR_PIXELTYPE_HALF) { // half
- channel_offset += 2;
- } else if (channels[i].pixel_type ==
- TINYEXR_PIXELTYPE_FLOAT) { // float
- channel_offset += 4;
- } else {
- assert(0);
- }
- }
- sampleSize = channel_offset;
- }
- assert(sampleSize >= 2);
-
- assert(static_cast<size_t>(
- pixelOffsetTable[static_cast<size_t>(data_width - 1)] *
- sampleSize) == sample_data.size());
- int samples_per_line = static_cast<int>(sample_data.size()) / sampleSize;
-
- //
- // Alloc memory
- //
-
- //
- // pixel data is stored as image[channels][pixel_samples]
- //
- {
- tinyexr::tinyexr_uint64 data_offset = 0;
- for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
- deep_image->image[c][y] = static_cast<float *>(
- malloc(sizeof(float) * static_cast<size_t>(samples_per_line)));
-
- if (channels[c].pixel_type == 0) { // UINT
- for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
- unsigned int ui;
- unsigned int *src_ptr = reinterpret_cast<unsigned int *>(
- &sample_data.at(size_t(data_offset) + x * sizeof(int)));
- tinyexr::cpy4(&ui, src_ptr);
- deep_image->image[c][y][x] = static_cast<float>(ui); // @fixme
- }
- data_offset +=
- sizeof(unsigned int) * static_cast<size_t>(samples_per_line);
- } else if (channels[c].pixel_type == 1) { // half
- for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
- tinyexr::FP16 f16;
- const unsigned short *src_ptr = reinterpret_cast<unsigned short *>(
- &sample_data.at(size_t(data_offset) + x * sizeof(short)));
- tinyexr::cpy2(&(f16.u), src_ptr);
- tinyexr::FP32 f32 = half_to_float(f16);
- deep_image->image[c][y][x] = f32.f;
- }
- data_offset += sizeof(short) * static_cast<size_t>(samples_per_line);
- } else { // float
- for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
- float f;
- const float *src_ptr = reinterpret_cast<float *>(
- &sample_data.at(size_t(data_offset) + x * sizeof(float)));
- tinyexr::cpy4(&f, src_ptr);
- deep_image->image[c][y][x] = f;
- }
- data_offset += sizeof(float) * static_cast<size_t>(samples_per_line);
- }
- }
- }
- } // y
-
- deep_image->width = data_width;
- deep_image->height = data_height;
-
- deep_image->channel_names = static_cast<const char **>(
- malloc(sizeof(const char *) * static_cast<size_t>(num_channels)));
- for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
- #ifdef _WIN32
- deep_image->channel_names[c] = _strdup(channels[c].name.c_str());
- #else
- deep_image->channel_names[c] = strdup(channels[c].name.c_str());
- #endif
- }
- deep_image->num_channels = num_channels;
-
- return TINYEXR_SUCCESS;
- }
-
- void InitEXRImage(EXRImage *exr_image) {
- if (exr_image == NULL) {
- return;
- }
-
- exr_image->width = 0;
- exr_image->height = 0;
- exr_image->num_channels = 0;
-
- exr_image->images = NULL;
- exr_image->tiles = NULL;
- exr_image->next_level = NULL;
- exr_image->level_x = 0;
- exr_image->level_y = 0;
-
- exr_image->num_tiles = 0;
- }
-
- void FreeEXRErrorMessage(const char *msg) {
- if (msg) {
- free(reinterpret_cast<void *>(const_cast<char *>(msg)));
- }
- return;
- }
-
- void InitEXRHeader(EXRHeader *exr_header) {
- if (exr_header == NULL) {
- return;
- }
-
- memset(exr_header, 0, sizeof(EXRHeader));
- }
-
- int FreeEXRHeader(EXRHeader *exr_header) {
- if (exr_header == NULL) {
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- if (exr_header->channels) {
- free(exr_header->channels);
- }
-
- if (exr_header->pixel_types) {
- free(exr_header->pixel_types);
- }
-
- if (exr_header->requested_pixel_types) {
- free(exr_header->requested_pixel_types);
- }
-
- for (int i = 0; i < exr_header->num_custom_attributes; i++) {
- if (exr_header->custom_attributes[i].value) {
- free(exr_header->custom_attributes[i].value);
- }
- }
-
- if (exr_header->custom_attributes) {
- free(exr_header->custom_attributes);
- }
-
- EXRSetNameAttr(exr_header, NULL);
-
- return TINYEXR_SUCCESS;
- }
-
- void EXRSetNameAttr(EXRHeader* exr_header, const char* name) {
- if (exr_header == NULL) {
- return;
- }
- memset(exr_header->name, 0, 256);
- if (name != NULL) {
- size_t len = std::min(strlen(name), size_t(255));
- if (len) {
- memcpy(exr_header->name, name, len);
- }
- }
- }
-
- int EXRNumLevels(const EXRImage* exr_image) {
- if (exr_image == NULL) return 0;
- if(exr_image->images) return 1; // scanlines
- int levels = 1;
- const EXRImage* level_image = exr_image;
- while((level_image = level_image->next_level)) ++levels;
- return levels;
- }
-
- int FreeEXRImage(EXRImage *exr_image) {
- if (exr_image == NULL) {
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- if (exr_image->next_level) {
- FreeEXRImage(exr_image->next_level);
- delete exr_image->next_level;
- }
-
- for (int i = 0; i < exr_image->num_channels; i++) {
- if (exr_image->images && exr_image->images[i]) {
- free(exr_image->images[i]);
- }
- }
-
- if (exr_image->images) {
- free(exr_image->images);
- }
-
- if (exr_image->tiles) {
- for (int tid = 0; tid < exr_image->num_tiles; tid++) {
- for (int i = 0; i < exr_image->num_channels; i++) {
- if (exr_image->tiles[tid].images && exr_image->tiles[tid].images[i]) {
- free(exr_image->tiles[tid].images[i]);
- }
- }
- if (exr_image->tiles[tid].images) {
- free(exr_image->tiles[tid].images);
- }
- }
- free(exr_image->tiles);
- }
-
- return TINYEXR_SUCCESS;
- }
-
- int ParseEXRHeaderFromFile(EXRHeader *exr_header, const EXRVersion *exr_version,
- const char *filename, const char **err) {
- if (exr_header == NULL || exr_version == NULL || filename == NULL) {
- tinyexr::SetErrorMessage("Invalid argument for ParseEXRHeaderFromFile",
- err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- FILE *fp = NULL;
- #ifdef _WIN32
- #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
- errno_t errcode =
- _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
- if (errcode != 0) {
- tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
- return TINYEXR_ERROR_INVALID_FILE;
- }
- #else
- // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
- fp = fopen(filename, "rb");
- #endif
- #else
- fp = fopen(filename, "rb");
- #endif
- if (!fp) {
- tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
-
- size_t filesize;
- // Compute size
- fseek(fp, 0, SEEK_END);
- filesize = static_cast<size_t>(ftell(fp));
- fseek(fp, 0, SEEK_SET);
-
- std::vector<unsigned char> buf(filesize); // @todo { use mmap }
- {
- size_t ret;
- ret = fread(&buf[0], 1, filesize, fp);
- assert(ret == filesize);
- fclose(fp);
-
- if (ret != filesize) {
- tinyexr::SetErrorMessage("fread() error on " + std::string(filename),
- err);
- return TINYEXR_ERROR_INVALID_FILE;
- }
- }
-
- return ParseEXRHeaderFromMemory(exr_header, exr_version, &buf.at(0), filesize,
- err);
- }
-
- int ParseEXRMultipartHeaderFromMemory(EXRHeader ***exr_headers,
- int *num_headers,
- const EXRVersion *exr_version,
- const unsigned char *memory, size_t size,
- const char **err) {
- if (memory == NULL || exr_headers == NULL || num_headers == NULL ||
- exr_version == NULL) {
- // Invalid argument
- tinyexr::SetErrorMessage(
- "Invalid argument for ParseEXRMultipartHeaderFromMemory", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- if (size < tinyexr::kEXRVersionSize) {
- tinyexr::SetErrorMessage("Data size too short", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- const unsigned char *marker = memory + tinyexr::kEXRVersionSize;
- size_t marker_size = size - tinyexr::kEXRVersionSize;
-
- std::vector<tinyexr::HeaderInfo> infos;
-
- for (;;) {
- tinyexr::HeaderInfo info;
- info.clear();
-
- std::string err_str;
- bool empty_header = false;
- int ret = ParseEXRHeader(&info, &empty_header, exr_version, &err_str,
- marker, marker_size);
-
- if (ret != TINYEXR_SUCCESS) {
- tinyexr::SetErrorMessage(err_str, err);
- return ret;
- }
-
- if (empty_header) {
- marker += 1; // skip '\0'
- break;
- }
-
- // `chunkCount` must exist in the header.
- if (info.chunk_count == 0) {
- tinyexr::SetErrorMessage(
- "`chunkCount' attribute is not found in the header.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- infos.push_back(info);
-
- // move to next header.
- marker += info.header_len;
- size -= info.header_len;
- }
-
- // allocate memory for EXRHeader and create array of EXRHeader pointers.
- (*exr_headers) =
- static_cast<EXRHeader **>(malloc(sizeof(EXRHeader *) * infos.size()));
-
-
- int retcode = TINYEXR_SUCCESS;
-
- for (size_t i = 0; i < infos.size(); i++) {
- EXRHeader *exr_header = static_cast<EXRHeader *>(malloc(sizeof(EXRHeader)));
- memset(exr_header, 0, sizeof(EXRHeader));
-
- std::string warn;
- std::string _err;
- if (!ConvertHeader(exr_header, infos[i], &warn, &_err)) {
- if (!_err.empty()) {
- tinyexr::SetErrorMessage(
- _err, err);
- }
- // continue to converting headers
- retcode = TINYEXR_ERROR_INVALID_HEADER;
- }
-
- exr_header->multipart = exr_version->multipart ? 1 : 0;
-
- (*exr_headers)[i] = exr_header;
- }
-
- (*num_headers) = static_cast<int>(infos.size());
-
- return retcode;
- }
-
- int ParseEXRMultipartHeaderFromFile(EXRHeader ***exr_headers, int *num_headers,
- const EXRVersion *exr_version,
- const char *filename, const char **err) {
- if (exr_headers == NULL || num_headers == NULL || exr_version == NULL ||
- filename == NULL) {
- tinyexr::SetErrorMessage(
- "Invalid argument for ParseEXRMultipartHeaderFromFile()", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- FILE *fp = NULL;
- #ifdef _WIN32
- #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
- errno_t errcode =
- _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
- if (errcode != 0) {
- tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
- return TINYEXR_ERROR_INVALID_FILE;
- }
- #else
- // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
- fp = fopen(filename, "rb");
- #endif
- #else
- fp = fopen(filename, "rb");
- #endif
- if (!fp) {
- tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
-
- size_t filesize;
- // Compute size
- fseek(fp, 0, SEEK_END);
- filesize = static_cast<size_t>(ftell(fp));
- fseek(fp, 0, SEEK_SET);
-
- std::vector<unsigned char> buf(filesize); // @todo { use mmap }
- {
- size_t ret;
- ret = fread(&buf[0], 1, filesize, fp);
- assert(ret == filesize);
- fclose(fp);
-
- if (ret != filesize) {
- tinyexr::SetErrorMessage("`fread' error. file may be corrupted.", err);
- return TINYEXR_ERROR_INVALID_FILE;
- }
- }
-
- return ParseEXRMultipartHeaderFromMemory(
- exr_headers, num_headers, exr_version, &buf.at(0), filesize, err);
- }
-
- int ParseEXRVersionFromMemory(EXRVersion *version, const unsigned char *memory,
- size_t size) {
- if (version == NULL || memory == NULL) {
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- if (size < tinyexr::kEXRVersionSize) {
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- const unsigned char *marker = memory;
-
- // Header check.
- {
- const char header[] = {0x76, 0x2f, 0x31, 0x01};
-
- if (memcmp(marker, header, 4) != 0) {
- return TINYEXR_ERROR_INVALID_MAGIC_NUMBER;
- }
- marker += 4;
- }
-
- version->tiled = false;
- version->long_name = false;
- version->non_image = false;
- version->multipart = false;
-
- // Parse version header.
- {
- // must be 2
- if (marker[0] != 2) {
- return TINYEXR_ERROR_INVALID_EXR_VERSION;
- }
-
- if (version == NULL) {
- return TINYEXR_SUCCESS; // May OK
- }
-
- version->version = 2;
-
- if (marker[1] & 0x2) { // 9th bit
- version->tiled = true;
- }
- if (marker[1] & 0x4) { // 10th bit
- version->long_name = true;
- }
- if (marker[1] & 0x8) { // 11th bit
- version->non_image = true; // (deep image)
- }
- if (marker[1] & 0x10) { // 12th bit
- version->multipart = true;
- }
- }
-
- return TINYEXR_SUCCESS;
- }
-
- int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) {
- if (filename == NULL) {
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- FILE *fp = NULL;
- #ifdef _WIN32
- #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
- errno_t err = _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
- if (err != 0) {
- // TODO(syoyo): return wfopen_s erro code
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
- #else
- // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
- fp = fopen(filename, "rb");
- #endif
- #else
- fp = fopen(filename, "rb");
- #endif
- if (!fp) {
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
-
- size_t file_size;
- // Compute size
- fseek(fp, 0, SEEK_END);
- file_size = static_cast<size_t>(ftell(fp));
- fseek(fp, 0, SEEK_SET);
-
- if (file_size < tinyexr::kEXRVersionSize) {
- return TINYEXR_ERROR_INVALID_FILE;
- }
-
- unsigned char buf[tinyexr::kEXRVersionSize];
- size_t ret = fread(&buf[0], 1, tinyexr::kEXRVersionSize, fp);
- fclose(fp);
-
- if (ret != tinyexr::kEXRVersionSize) {
- return TINYEXR_ERROR_INVALID_FILE;
- }
-
- return ParseEXRVersionFromMemory(version, buf, tinyexr::kEXRVersionSize);
- }
-
- int LoadEXRMultipartImageFromMemory(EXRImage *exr_images,
- const EXRHeader **exr_headers,
- unsigned int num_parts,
- const unsigned char *memory,
- const size_t size, const char **err) {
- if (exr_images == NULL || exr_headers == NULL || num_parts == 0 ||
- memory == NULL || (size <= tinyexr::kEXRVersionSize)) {
- tinyexr::SetErrorMessage(
- "Invalid argument for LoadEXRMultipartImageFromMemory()", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- // compute total header size.
- size_t total_header_size = 0;
- for (unsigned int i = 0; i < num_parts; i++) {
- if (exr_headers[i]->header_len == 0) {
- tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- total_header_size += exr_headers[i]->header_len;
- }
-
- const char *marker = reinterpret_cast<const char *>(
- memory + total_header_size + 4 +
- 4); // +8 for magic number and version header.
-
- marker += 1; // Skip empty header.
-
- // NOTE 1:
- // In multipart image, There is 'part number' before chunk data.
- // 4 byte : part number
- // 4+ : chunk
- //
- // NOTE 2:
- // EXR spec says 'part number' is 'unsigned long' but actually this is
- // 'unsigned int(4 bytes)' in OpenEXR implementation...
- // http://www.openexr.com/openexrfilelayout.pdf
-
- // Load chunk offset table.
- std::vector<tinyexr::OffsetData> chunk_offset_table_list;
- chunk_offset_table_list.reserve(num_parts);
- for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
- chunk_offset_table_list.resize(chunk_offset_table_list.size() + 1);
- tinyexr::OffsetData& offset_data = chunk_offset_table_list.back();
- if (!exr_headers[i]->tiled || exr_headers[i]->tile_level_mode == TINYEXR_TILE_ONE_LEVEL) {
- tinyexr::InitSingleResolutionOffsets(offset_data, size_t(exr_headers[i]->chunk_count));
- std::vector<tinyexr::tinyexr_uint64>& offset_table = offset_data.offsets[0][0];
-
- for (size_t c = 0; c < offset_table.size(); c++) {
- tinyexr::tinyexr_uint64 offset;
- memcpy(&offset, marker, 8);
- tinyexr::swap8(&offset);
-
- if (offset >= size) {
- tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
- err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
-
- offset_table[c] = offset + 4; // +4 to skip 'part number'
- marker += 8;
- }
- } else {
- {
- std::vector<int> num_x_tiles, num_y_tiles;
- tinyexr::PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_headers[i]);
- int num_blocks = InitTileOffsets(offset_data, exr_headers[i], num_x_tiles, num_y_tiles);
- if (num_blocks != exr_headers[i]->chunk_count) {
- tinyexr::SetErrorMessage("Invalid offset table size.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- }
- for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
- for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
- for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
- tinyexr::tinyexr_uint64 offset;
- memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
- tinyexr::swap8(&offset);
- if (offset >= size) {
- tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
- err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- offset_data.offsets[l][dy][dx] = offset + 4; // +4 to skip 'part number'
- marker += sizeof(tinyexr::tinyexr_uint64); // = 8
- }
- }
- }
- }
- }
-
- // Decode image.
- for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
- tinyexr::OffsetData &offset_data = chunk_offset_table_list[i];
-
- // First check 'part number' is identitical to 'i'
- for (unsigned int l = 0; l < offset_data.offsets.size(); ++l)
- for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy)
- for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
-
- const unsigned char *part_number_addr =
- memory + offset_data.offsets[l][dy][dx] - 4; // -4 to move to 'part number' field.
- unsigned int part_no;
- memcpy(&part_no, part_number_addr, sizeof(unsigned int)); // 4
- tinyexr::swap4(&part_no);
-
- if (part_no != i) {
- tinyexr::SetErrorMessage("Invalid `part number' in EXR header chunks.",
- err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- }
-
- std::string e;
- int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_data,
- memory, size, &e);
- if (ret != TINYEXR_SUCCESS) {
- if (!e.empty()) {
- tinyexr::SetErrorMessage(e, err);
- }
- return ret;
- }
- }
-
- return TINYEXR_SUCCESS;
- }
-
- int LoadEXRMultipartImageFromFile(EXRImage *exr_images,
- const EXRHeader **exr_headers,
- unsigned int num_parts, const char *filename,
- const char **err) {
- if (exr_images == NULL || exr_headers == NULL || num_parts == 0) {
- tinyexr::SetErrorMessage(
- "Invalid argument for LoadEXRMultipartImageFromFile", err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- FILE *fp = NULL;
- #ifdef _WIN32
- #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
- errno_t errcode =
- _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
- if (errcode != 0) {
- tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
- #else
- // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
- fp = fopen(filename, "rb");
- #endif
- #else
- fp = fopen(filename, "rb");
- #endif
- if (!fp) {
- tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
- return TINYEXR_ERROR_CANT_OPEN_FILE;
- }
-
- size_t filesize;
- // Compute size
- fseek(fp, 0, SEEK_END);
- filesize = static_cast<size_t>(ftell(fp));
- fseek(fp, 0, SEEK_SET);
-
- std::vector<unsigned char> buf(filesize); // @todo { use mmap }
- {
- size_t ret;
- ret = fread(&buf[0], 1, filesize, fp);
- assert(ret == filesize);
- fclose(fp);
- (void)ret;
- }
-
- return LoadEXRMultipartImageFromMemory(exr_images, exr_headers, num_parts,
- &buf.at(0), filesize, err);
- }
-
- int SaveEXR(const float *data, int width, int height, int components,
- const int save_as_fp16, const char *outfilename, const char **err) {
- if ((components == 1) || components == 3 || components == 4) {
- // OK
- } else {
- std::stringstream ss;
- ss << "Unsupported component value : " << components << std::endl;
-
- tinyexr::SetErrorMessage(ss.str(), err);
- return TINYEXR_ERROR_INVALID_ARGUMENT;
- }
-
- EXRHeader header;
- InitEXRHeader(&header);
-
- if ((width < 16) && (height < 16)) {
- // No compression for small image.
- header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE;
- } else {
- header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP;
- }
-
- EXRImage image;
- InitEXRImage(&image);
-
- image.num_channels = components;
-
- std::vector<float> images[4];
-
- if (components == 1) {
- images[0].resize(static_cast<size_t>(width * height));
- memcpy(images[0].data(), data, sizeof(float) * size_t(width * height));
- } else {
- images[0].resize(static_cast<size_t>(width * height));
- images[1].resize(static_cast<size_t>(width * height));
- images[2].resize(static_cast<size_t>(width * height));
- images[3].resize(static_cast<size_t>(width * height));
-
- // Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers
- for (size_t i = 0; i < static_cast<size_t>(width * height); i++) {
- images[0][i] = data[static_cast<size_t>(components) * i + 0];
- images[1][i] = data[static_cast<size_t>(components) * i + 1];
- images[2][i] = data[static_cast<size_t>(components) * i + 2];
- if (components == 4) {
- images[3][i] = data[static_cast<size_t>(components) * i + 3];
- }
- }
- }
-
- float *image_ptr[4] = {0, 0, 0, 0};
- if (components == 4) {
- image_ptr[0] = &(images[3].at(0)); // A
- image_ptr[1] = &(images[2].at(0)); // B
- image_ptr[2] = &(images[1].at(0)); // G
- image_ptr[3] = &(images[0].at(0)); // R
- } else if (components == 3) {
- image_ptr[0] = &(images[2].at(0)); // B
- image_ptr[1] = &(images[1].at(0)); // G
- image_ptr[2] = &(images[0].at(0)); // R
- } else if (components == 1) {
- image_ptr[0] = &(images[0].at(0)); // A
- }
-
- image.images = reinterpret_cast<unsigned char **>(image_ptr);
- image.width = width;
- image.height = height;
-
- header.num_channels = components;
- header.channels = static_cast<EXRChannelInfo *>(malloc(
- sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels)));
- // Must be (A)BGR order, since most of EXR viewers expect this channel order.
- if (components == 4) {
- #ifdef _MSC_VER
- strncpy_s(header.channels[0].name, "A", 255);
- strncpy_s(header.channels[1].name, "B", 255);
- strncpy_s(header.channels[2].name, "G", 255);
- strncpy_s(header.channels[3].name, "R", 255);
- #else
- strncpy(header.channels[0].name, "A", 255);
- strncpy(header.channels[1].name, "B", 255);
- strncpy(header.channels[2].name, "G", 255);
- strncpy(header.channels[3].name, "R", 255);
- #endif
- header.channels[0].name[strlen("A")] = '\0';
- header.channels[1].name[strlen("B")] = '\0';
- header.channels[2].name[strlen("G")] = '\0';
- header.channels[3].name[strlen("R")] = '\0';
- } else if (components == 3) {
- #ifdef _MSC_VER
- strncpy_s(header.channels[0].name, "B", 255);
- strncpy_s(header.channels[1].name, "G", 255);
- strncpy_s(header.channels[2].name, "R", 255);
- #else
- strncpy(header.channels[0].name, "B", 255);
- strncpy(header.channels[1].name, "G", 255);
- strncpy(header.channels[2].name, "R", 255);
- #endif
- header.channels[0].name[strlen("B")] = '\0';
- header.channels[1].name[strlen("G")] = '\0';
- header.channels[2].name[strlen("R")] = '\0';
- } else {
- #ifdef _MSC_VER
- strncpy_s(header.channels[0].name, "A", 255);
- #else
- strncpy(header.channels[0].name, "A", 255);
- #endif
- header.channels[0].name[strlen("A")] = '\0';
- }
-
- header.pixel_types = static_cast<int *>(
- malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
- header.requested_pixel_types = static_cast<int *>(
- malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
- for (int i = 0; i < header.num_channels; i++) {
- header.pixel_types[i] =
- TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image
-
- if (save_as_fp16 > 0) {
- header.requested_pixel_types[i] =
- TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format
- } else {
- header.requested_pixel_types[i] =
- TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e.
- // no precision reduction)
- }
- }
-
- int ret = SaveEXRImageToFile(&image, &header, outfilename, err);
- if (ret != TINYEXR_SUCCESS) {
- return ret;
- }
-
- free(header.channels);
- free(header.pixel_types);
- free(header.requested_pixel_types);
-
- return ret;
- }
-
- #ifdef __clang__
- // zero-as-null-ppinter-constant
- #pragma clang diagnostic pop
- #endif
-
- #endif // TINYEXR_IMPLEMENTATION_DEFINED
- #endif // TINYEXR_IMPLEMENTATION
|