|
|
- #include "tinyexr.h"
-
- #define STB_IMAGE_IMPLEMENTATION
- #include "stb_image.h"
-
- #define STB_IMAGE_WRITE_IMPLEMENTATION
- #include "stb_image_write.h"
-
- #include <array>
- #include <cmath>
- #include <iostream>
- #include <string>
- #include <vector>
-
- // From Filament.
- static inline void RGBMtoLinear(const float rgbm[4], float linear[3]) {
- linear[0] = rgbm[0] * rgbm[3] * 16.0f;
- linear[1] = rgbm[1] * rgbm[3] * 16.0f;
- linear[2] = rgbm[2] * rgbm[3] * 16.0f;
-
- // Gamma to linear space
- linear[0] = linear[0] * linear[0];
- linear[1] = linear[1] * linear[1];
- linear[2] = linear[2] * linear[2];
- }
-
- static inline void LinearToRGBM(const float linear[3], float rgbm[4]) {
- rgbm[0] = linear[0];
- rgbm[1] = linear[1];
- rgbm[2] = linear[2];
- rgbm[3] = 1.0f;
-
- // Linear to gamma space
- rgbm[0] = rgbm[0] * rgbm[0];
- rgbm[1] = rgbm[1] * rgbm[1];
- rgbm[2] = rgbm[2] * rgbm[2];
-
- // Set the range
- rgbm[0] /= 16.0f;
- rgbm[1] /= 16.0f;
- rgbm[2] /= 16.0f;
-
- float maxComponent =
- std::max(std::max(rgbm[0], rgbm[1]), std::max(rgbm[2], 1e-6f));
- // Don't let M go below 1 in the [0..16] range
- rgbm[3] = std::max(1.0f / 16.0f, std::min(maxComponent, 1.0f));
- rgbm[3] = std::ceil(rgbm[3] * 255.0f) / 255.0f;
-
- // saturate([0.0, 1.0])
- rgbm[0] = std::max(0.0f, std::min(1.0f, rgbm[0] / rgbm[3]));
- rgbm[1] = std::max(0.0f, std::min(1.0f, rgbm[1] / rgbm[3]));
- rgbm[2] = std::max(0.0f, std::min(1.0f, rgbm[2] / rgbm[3]));
- }
-
- static std::string GetFileExtension(const std::string& filename) {
- if (filename.find_last_of(".") != std::string::npos)
- return filename.substr(filename.find_last_of(".") + 1);
- return "";
- }
-
- struct Image {
- int width;
- int height;
- std::vector<float> data;
- };
-
- static bool LoadCubemaps(const std::array<std::string, 6> face_filenames,
- std::array<Image, 6>* output) {
- for (size_t i = 0; i < 6; i++) {
- std::string ext = GetFileExtension(face_filenames[i]);
-
- Image image;
-
- if ((ext.compare("exr") == 0) || (ext.compare("EXR") == 0)) {
- int width, height;
- float* rgba;
- const char* err;
-
- int ret =
- LoadEXR(&rgba, &width, &height, face_filenames[i].c_str(), &err);
- if (ret != 0) {
- if (err) {
- std::cerr << "EXR load error: " << err << std::endl;
- } else {
- std::cerr << "EXR load error: code " << ret << std::endl;
- }
- return false;
- }
-
- image.width = width;
- image.height = height;
- image.data.resize(width * height * 3);
-
- // RGBA -> RGB
- for (size_t j = 0; j < size_t(width * height); j++) {
- image.data[3 * j + 0] = rgba[4 * j + 0];
- image.data[3 * j + 1] = rgba[4 * j + 1];
- image.data[3 * j + 2] = rgba[4 * j + 2];
- }
-
- free(rgba);
-
- (*output)[i] = std::move(image);
-
- } else if ((ext.compare("rgbm") == 0) || (ext.compare("RGBM") == 0)) {
- int width, height;
- int n;
-
- unsigned char* data = stbi_load(face_filenames[i].c_str(), &width,
- &height, &n, STBI_default);
-
- if (!data) {
- std::cerr << "Failed to load file: " << face_filenames[i] << std::endl;
- return false;
- }
-
- if ((n != 4)) {
- std::cerr << "Not a RGBM encoded image: " << face_filenames[i]
- << std::endl;
- return false;
- }
-
- image.width = width;
- image.height = height;
- image.data.resize(size_t(width * height));
-
- for (size_t i = 0; i < size_t(width * height); i++) {
- float rgbm[4];
- // [0, 1.0]
- rgbm[0] = data[4 * i + 0] / 255.0f;
- rgbm[1] = data[4 * i + 1] / 255.0f;
- rgbm[2] = data[4 * i + 2] / 255.0f;
- rgbm[3] = data[4 * i + 3] / 255.0f;
-
- float linear[3];
- RGBMtoLinear(rgbm, linear);
-
- image.data[3 * i + 0] = linear[0];
- image.data[3 * i + 1] = linear[1];
- image.data[3 * i + 2] = linear[2];
- }
-
- (*output)[i] = std::move(image);
-
- } else {
- std::cerr << "Unknown file extension : " << ext << std::endl;
- return false;
- }
- std::cout << "Loaded " << face_filenames[i] << std::endl;
- }
-
- return true;
- }
-
- void convert_xyz_to_cube_uv(float x, float y, float z, int* index, float* u,
- float* v) {
- float absX = fabs(x);
- float absY = fabs(y);
- float absZ = fabs(z);
-
- int isXPositive = x > 0.0f ? 1 : 0;
- int isYPositive = y > 0.0f ? 1 : 0;
- int isZPositive = z > 0.0f ? 1 : 0;
-
- float maxAxis, uc, vc;
-
- // POSITIVE X
- if (isXPositive && absX >= absY && absX >= absZ) {
- // u (0 to 1) goes from +z to -z
- // v (0 to 1) goes from -y to +y
- maxAxis = absX;
- uc = -z;
- vc = y;
- *index = 0;
- }
- // NEGATIVE X
- if (!isXPositive && absX >= absY && absX >= absZ) {
- // u (0 to 1) goes from -z to +z
- // v (0 to 1) goes from -y to +y
- maxAxis = absX;
- uc = z;
- vc = y;
- *index = 1;
- }
- // POSITIVE Y
- if (isYPositive && absY >= absX && absY >= absZ) {
- // u (0 to 1) goes from -x to +x
- // v (0 to 1) goes from +z to -z
- maxAxis = absY;
- uc = x;
- vc = -z;
- *index = 2;
- }
- // NEGATIVE Y
- if (!isYPositive && absY >= absX && absY >= absZ) {
- // u (0 to 1) goes from -x to +x
- // v (0 to 1) goes from -z to +z
- maxAxis = absY;
- uc = x;
- vc = z;
- *index = 3;
- }
- // POSITIVE Z
- if (isZPositive && (absZ >= absX) && (absZ >= absY)) {
- // u (0 to 1) goes from -x to +x
- // v (0 to 1) goes from -y to +y
- maxAxis = absZ;
- uc = x;
- vc = y;
- *index = 4;
- }
- // NEGATIVE Z
- if (!isZPositive && (absZ >= absX) && (absZ >= absY)) {
- // u (0 to 1) goes from +x to -x
- // v (0 to 1) goes from -y to +y
- maxAxis = absZ;
- uc = -x;
- vc = y;
- *index = 5;
- }
-
- // Convert range from -1 to 1 to 0 to 1
- *u = 0.5f * (uc / maxAxis + 1.0f);
- *v = 0.5f * (vc / maxAxis + 1.0f);
- }
-
- //
- // Simple bilinear texture filtering.
- //
- static void SampleTexture(float* rgba, float u, float v, int width, int height,
- int channels, const float* texels) {
- float sx = std::floor(u);
- float sy = std::floor(v);
-
- // Wrap mode = repeat
- float uu = u - sx;
- float vv = v - sy;
-
- // clamp
- uu = std::max(uu, 0.0f);
- uu = std::min(uu, 1.0f);
- vv = std::max(vv, 0.0f);
- vv = std::min(vv, 1.0f);
-
- float px = (width - 1) * uu;
- float py = (height - 1) * vv;
-
- int x0 = std::max(0, std::min((int)px, (width - 1)));
- int y0 = std::max(0, std::min((int)py, (height - 1)));
- int x1 = std::max(0, std::min((x0 + 1), (width - 1)));
- int y1 = std::max(0, std::min((y0 + 1), (height - 1)));
-
- float dx = px - (float)x0;
- float dy = py - (float)y0;
-
- float w[4];
-
- w[0] = (1.0f - dx) * (1.0 - dy);
- w[1] = (1.0f - dx) * (dy);
- w[2] = (dx) * (1.0 - dy);
- w[3] = (dx) * (dy);
-
- int i00 = channels * (y0 * width + x0);
- int i01 = channels * (y0 * width + x1);
- int i10 = channels * (y1 * width + x0);
- int i11 = channels * (y1 * width + x1);
-
- for (int i = 0; i < channels; i++) {
- rgba[i] = w[0] * texels[i00 + i] + w[1] * texels[i10 + i] +
- w[2] * texels[i01 + i] + w[3] * texels[i11 + i];
- }
- }
-
- static void SampleCubemap(const std::array<Image, 6>& cubemap_faces,
- const float n[3], float col[3]) {
- int face;
- float u, v;
- convert_xyz_to_cube_uv(n[0], n[1], n[2], &face, &u, &v);
-
- v = 1.0f - v;
-
- // std::cout << "face = " << face << std::endl;
-
- // TODO(syoyo): Do we better consider seams on the cubemap face border?
- const Image& tex = cubemap_faces[face];
-
- // std::cout << "n = " << n[0] << ", " << n[1] << ", " << n[2] << ", uv = " <<
- // u << ", " << v << std::endl;
-
- SampleTexture(col, u, v, tex.width, tex.height, /* RGB */ 3, tex.data.data());
-
- // col[0] = u;
- // col[1] = v;
- // col[2] = 0.0f;
- #if 0
- if (face == 0) {
- col[0] = 1.0f;
- col[1] = 0.0f;
- col[2] = 0.0f;
- } else if (face == 1) {
- col[0] = 0.0f;
- col[1] = 1.0f;
- col[2] = 0.0f;
- } else if (face == 2) {
- col[0] = 0.0f;
- col[1] = 0.0f;
- col[2] = 1.0f;
- } else if (face == 3) {
- col[0] = 1.0f;
- col[1] = 0.0f;
- col[2] = 1.0f;
- } else if (face == 4) {
- col[0] = 0.0f;
- col[1] = 1.0f;
- col[2] = 1.0f;
- } else if (face == 5) {
- col[0] = 1.0f;
- col[1] = 1.0f;
- col[2] = 1.0f;
- }
- #endif
- }
-
- static void CubemapToLonglat(const std::array<Image, 6>& cubemap_faces,
- const float phi_offset, /* in angle */
- const int width, Image* longlat) {
- int height = width / 2;
-
- longlat->width = width;
- longlat->height = height;
- longlat->data.resize(size_t(width * height * 3)); // RGB
-
- const float kPI = 3.141592f;
-
- for (size_t y = 0; y < size_t(height); y++) {
- float theta = ((y + 0.5f) / float(height)) * kPI; // [0, pi]
- for (size_t x = 0; x < size_t(width); x++) {
- float phi = ((x + 0.5f) / float(width)) * 2.0f * kPI; // [0, 2 pi]
-
- phi += (phi_offset) * kPI / 180.0f;
-
- float n[3];
-
- // Y-up
- n[0] = std::sin(theta) * std::cos(phi);
- n[1] = std::cos(theta);
- n[2] = -std::sin(theta) * std::sin(phi);
-
- float col[3];
- SampleCubemap(cubemap_faces, n, col);
-
- longlat->data[3 * size_t(y * width + x) + 0] = col[0];
- longlat->data[3 * size_t(y * width + x) + 1] = col[1];
- longlat->data[3 * size_t(y * width + x) + 2] = col[2];
- }
- }
- }
-
- static unsigned char ftouc(const float f) {
- int i(f * 255.0f);
- i = std::max(0, std::min(255, i));
- return static_cast<unsigned char>(i);
- }
-
- int main(int argc, char** argv) {
- float phi_offset = 0.0f;
-
- if (argc < 9) {
- printf(
- "Usage: cube2longlat px.exr nx.exr py.exr ny.exr pz.exr nz.exr "
- "output_width output.exr\n");
- exit(-1);
- }
-
- std::array<std::string, 6> face_filenames;
-
- face_filenames[0] = argv[1];
- face_filenames[1] = argv[2];
- face_filenames[2] = argv[3];
- face_filenames[3] = argv[4];
- face_filenames[4] = argv[5];
- face_filenames[5] = argv[6];
-
- int output_width = atoi(argv[7]);
-
- std::string output_filename = argv[8];
-
- if (argc > 9) {
- phi_offset = atof(argv[9]);
- }
-
- std::array<Image, 6> cubemaps;
-
- if (!LoadCubemaps(face_filenames, &cubemaps)) {
- std::cerr << "Failed to load cubemap faces." << std::endl;
- return EXIT_FAILURE;
- }
-
- Image longlat;
-
- CubemapToLonglat(cubemaps, phi_offset, output_width, &longlat);
-
- {
- std::string ext = GetFileExtension(output_filename);
- if ((ext.compare("exr") == 0) || (ext.compare("EXR") == 0)) {
- const char *err;
- int ret = SaveEXR(longlat.data.data(), longlat.width, longlat.height,
- /* RGB */ 3, /* fp16 */ 0, output_filename.c_str(), &err);
- if (ret != TINYEXR_SUCCESS) {
- if (err) {
- std::cout << "Failed to save image as EXR. msg = " << err << ", code = " << ret << std::endl;
- FreeEXRErrorMessage(err);
- } else {
- std::cout << "Failed to save image as EXR. code = " << ret << std::endl;
- }
- return EXIT_FAILURE;
- }
- } else if ((ext.compare("rgbm") == 0) || (ext.compare("RGBM") == 0)) {
- std::vector<unsigned char> rgbm_image;
-
- for (size_t j = 0; j < size_t(longlat.width * longlat.height); j++) {
- float linear[3];
- linear[0] = longlat.data[3 * j + 0];
- linear[1] = longlat.data[3 * j + 1];
- linear[2] = longlat.data[3 * j + 2];
-
- float rgbm[4];
-
- LinearToRGBM(linear, rgbm);
-
- rgbm_image[4 * j + 0] = ftouc(rgbm[0]);
- rgbm_image[4 * j + 1] = ftouc(rgbm[1]);
- rgbm_image[4 * j + 2] = ftouc(rgbm[2]);
- rgbm_image[4 * j + 3] = ftouc(rgbm[2]);
- }
-
- // Save as PNG.
- int ret =
- stbi_write_png(output_filename.c_str(), longlat.width, longlat.height,
- 4, rgbm_image.data(), longlat.width * 4);
-
- if (ret == 0) {
- std::cerr << "Failed to save image as RGBM file : " << output_filename
- << std::endl;
- return EXIT_FAILURE;
- }
-
- } else {
- if ((ext.compare("hdr") == 0) || (ext.compare("HDR") == 0)) {
- // ok
- } else {
- std::cout << "Unknown file extension. Interpret it as RGBE format : "
- << ext << std::endl;
- }
-
- int ret = stbi_write_hdr(output_filename.c_str(), longlat.width,
- longlat.height, 3, longlat.data.data());
-
- if (ret == 0) {
- std::cerr << "Failed to save image as HDR file : " << output_filename
- << std::endl;
- return EXIT_FAILURE;
- }
- }
- }
-
- std::cout << "Write " << output_filename << std::endl;
-
- return 0;
- }
|