|
|
- #include "config.h"
-
- #include <xmmintrin.h>
-
- #include <cmath>
- #include <limits>
-
- #include "alnumeric.h"
- #include "core/bsinc_defs.h"
- #include "defs.h"
- #include "hrtfbase.h"
-
- struct SSETag;
- struct BSincTag;
- struct FastBSincTag;
-
-
- #if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE__)
- #pragma GCC target("sse")
- #endif
-
- namespace {
-
- constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
- constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
-
- #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
-
- inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
- const float left, const float right)
- {
- const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
-
- ASSUME(IrSize >= MinIrLength);
- /* This isn't technically correct to test alignment, but it's true for
- * systems that support SSE, which is the only one that needs to know the
- * alignment of Values (which alternates between 8- and 16-byte aligned).
- */
- if(!(reinterpret_cast<uintptr_t>(Values)&15))
- {
- for(size_t i{0};i < IrSize;i += 2)
- {
- const __m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
- __m128 vals{_mm_load_ps(&Values[i][0])};
- vals = MLA4(vals, lrlr, coeffs);
- _mm_store_ps(&Values[i][0], vals);
- }
- }
- else
- {
- __m128 imp0, imp1;
- __m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
- __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))};
- imp0 = _mm_mul_ps(lrlr, coeffs);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals);
- size_t td{((IrSize+1)>>1) - 1};
- size_t i{1};
- do {
- coeffs = _mm_load_ps(&Coeffs[i+1][0]);
- vals = _mm_load_ps(&Values[i][0]);
- imp1 = _mm_mul_ps(lrlr, coeffs);
- imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
- vals = _mm_add_ps(imp0, vals);
- _mm_store_ps(&Values[i][0], vals);
- imp0 = imp1;
- i += 2;
- } while(--td);
- vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0]));
- imp0 = _mm_movehl_ps(imp0, imp0);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals);
- }
- }
-
- } // namespace
-
- template<>
- float *Resample_<BSincTag,SSETag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- {
- const float *const filter{state->bsinc.filter};
- const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
- const size_t m{state->bsinc.m};
- ASSUME(m > 0);
-
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- // Apply the scale and phase interpolated filter.
- __m128 r4{_mm_setzero_ps()};
- {
- const __m128 pf4{_mm_set1_ps(pf)};
- const float *RESTRICT fil{filter + m*pi*2};
- const float *RESTRICT phd{fil + m};
- const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
- const float *RESTRICT spd{scd + m};
- size_t td{m >> 2};
- size_t j{0u};
-
- do {
- /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
- const __m128 f4 = MLA4(
- MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])),
- pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j])));
- /* r += f*src */
- r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
- j += 4;
- } while(--td);
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- out_sample = _mm_cvtss_f32(r4);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
- }
-
- template<>
- float *Resample_<FastBSincTag,SSETag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- {
- const float *const filter{state->bsinc.filter};
- const size_t m{state->bsinc.m};
- ASSUME(m > 0);
-
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- // Apply the phase interpolated filter.
- __m128 r4{_mm_setzero_ps()};
- {
- const __m128 pf4{_mm_set1_ps(pf)};
- const float *RESTRICT fil{filter + m*pi*2};
- const float *RESTRICT phd{fil + m};
- size_t td{m >> 2};
- size_t j{0u};
-
- do {
- /* f = fil + pf*phd */
- const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j]));
- /* r += f*src */
- r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
- j += 4;
- } while(--td);
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- out_sample = _mm_cvtss_f32(r4);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
- }
-
-
- template<>
- void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const MixHrtfFilter *hrtfparams, const size_t BufferSize)
- { MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
-
- template<>
- void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
- {
- MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
- BufferSize);
- }
-
- template<>
- void MixDirectHrtf_<SSETag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
- float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
- {
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
- IrSize, BufferSize);
- }
-
-
- template<>
- void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
- {
- const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
- const auto min_len = minz(Counter, InSamples.size());
- const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
-
- for(FloatBufferLine &output : OutBuffer)
- {
- float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
- float gain{*CurrentGains};
- const float step{(*TargetGains-gain) * delta};
-
- size_t pos{0};
- if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
- gain = *TargetGains;
- else
- {
- float step_count{0.0f};
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(size_t todo{min_len >> 2})
- {
- const __m128 four4{_mm_set1_ps(4.0f)};
- const __m128 step4{_mm_set1_ps(step)};
- const __m128 gain4{_mm_set1_ps(gain)};
- __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
- do {
- const __m128 val4{_mm_load_ps(&InSamples[pos])};
- __m128 dry4{_mm_load_ps(&dst[pos])};
-
- /* dry += val * (gain + step*step_count) */
- dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
-
- _mm_store_ps(&dst[pos], dry4);
- step_count4 = _mm_add_ps(step_count4, four4);
- pos += 4;
- } while(--todo);
- /* NOTE: step_count4 now represents the next four counts after
- * the last four mixed samples, so the lowest element
- * represents the next step count to apply.
- */
- step_count = _mm_cvtss_f32(step_count4);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- for(size_t leftover{min_len&3};leftover;++pos,--leftover)
- {
- dst[pos] += InSamples[pos] * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = *TargetGains;
- else
- gain += step*step_count;
-
- /* Mix until pos is aligned with 4 or the mix is done. */
- for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
- dst[pos] += InSamples[pos] * gain;
- }
- *CurrentGains = gain;
- ++CurrentGains;
- ++TargetGains;
-
- if(!(std::abs(gain) > GainSilenceThreshold))
- continue;
- if(size_t todo{(InSamples.size()-pos) >> 2})
- {
- const __m128 gain4{_mm_set1_ps(gain)};
- do {
- const __m128 val4{_mm_load_ps(&InSamples[pos])};
- __m128 dry4{_mm_load_ps(&dst[pos])};
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- _mm_store_ps(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- }
- for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
- dst[pos] += InSamples[pos] * gain;
- }
- }
|