|
|
- #include "config.h"
-
- #include <cassert>
- #include <cmath>
- #include <limits>
-
- #include "alnumeric.h"
- #include "core/bsinc_tables.h"
- #include "defs.h"
- #include "hrtfbase.h"
-
- struct CTag;
- struct CopyTag;
- struct PointTag;
- struct LerpTag;
- struct CubicTag;
- struct BSincTag;
- struct FastBSincTag;
-
-
- namespace {
-
- constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
- constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
-
- inline float do_point(const InterpState&, const float *RESTRICT vals, const uint)
- { return vals[0]; }
- inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac)
- { return lerpf(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
- inline float do_cubic(const InterpState&, const float *RESTRICT vals, const uint frac)
- { return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
- inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
- {
- const size_t m{istate.bsinc.m};
- ASSUME(m > 0);
-
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
- const float *RESTRICT phd{fil + m};
- const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
- const float *RESTRICT spd{scd + m};
-
- // Apply the scale and phase interpolated filter.
- float r{0.0f};
- for(size_t j_f{0};j_f < m;j_f++)
- r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
- return r;
- }
- inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
- {
- const size_t m{istate.bsinc.m};
- ASSUME(m > 0);
-
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
- const float *RESTRICT phd{fil + m};
-
- // Apply the phase interpolated filter.
- float r{0.0f};
- for(size_t j_f{0};j_f < m;j_f++)
- r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
- return r;
- }
-
- using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint);
- template<SamplerT Sampler>
- float *DoResample(const InterpState *state, float *RESTRICT src, uint frac, uint increment,
- const al::span<float> dst)
- {
- const InterpState istate{*state};
- for(float &out : dst)
- {
- out = Sampler(istate, src, frac);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
- }
-
- inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
- const float left, const float right)
- {
- ASSUME(IrSize >= MinIrLength);
- for(size_t c{0};c < IrSize;++c)
- {
- Values[c][0] += Coeffs[c][0] * left;
- Values[c][1] += Coeffs[c][1] * right;
- }
- }
-
- } // namespace
-
- template<>
- float *Resample_<CopyTag,CTag>(const InterpState*, float *RESTRICT src, uint, uint,
- const al::span<float> dst)
- {
- #if defined(HAVE_SSE) || defined(HAVE_NEON)
- /* Avoid copying the source data if it's aligned like the destination. */
- if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
- return src;
- #endif
- std::copy_n(src, dst.size(), dst.begin());
- return dst.data();
- }
-
- template<>
- float *Resample_<PointTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- { return DoResample<do_point>(state, src, frac, increment, dst); }
-
- template<>
- float *Resample_<LerpTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- { return DoResample<do_lerp>(state, src, frac, increment, dst); }
-
- template<>
- float *Resample_<CubicTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- { return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
-
- template<>
- float *Resample_<BSincTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- { return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
-
- template<>
- float *Resample_<FastBSincTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- { return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
-
-
- template<>
- void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const MixHrtfFilter *hrtfparams, const size_t BufferSize)
- { MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
-
- template<>
- void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
- {
- MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
- BufferSize);
- }
-
- template<>
- void MixDirectHrtf_<CTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
- float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
- {
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
- IrSize, BufferSize);
- }
-
-
- template<>
- void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
- {
- const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
- const auto min_len = minz(Counter, InSamples.size());
- for(FloatBufferLine &output : OutBuffer)
- {
- float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
- float gain{*CurrentGains};
- const float step{(*TargetGains-gain) * delta};
-
- size_t pos{0};
- if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
- gain = *TargetGains;
- else
- {
- float step_count{0.0f};
- for(;pos != min_len;++pos)
- {
- dst[pos] += InSamples[pos] * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = *TargetGains;
- else
- gain += step*step_count;
- }
- *CurrentGains = gain;
- ++CurrentGains;
- ++TargetGains;
-
- if(!(std::abs(gain) > GainSilenceThreshold))
- continue;
- for(;pos != InSamples.size();++pos)
- dst[pos] += InSamples[pos] * gain;
- }
- }
|