|
|
- #ifndef PHASE_SHIFTER_H
- #define PHASE_SHIFTER_H
-
- #ifdef HAVE_SSE_INTRINSICS
- #include <xmmintrin.h>
- #elif defined(HAVE_NEON)
- #include <arm_neon.h>
- #endif
-
- #include <array>
- #include <stddef.h>
-
- #include "alcomplex.h"
- #include "alspan.h"
-
-
- /* Implements a wide-band +90 degree phase-shift. Note that this should be
- * given one sample less of a delay (FilterSize/2 - 1) compared to the direct
- * signal delay (FilterSize/2) to properly align.
- */
- template<size_t FilterSize>
- struct PhaseShifterT {
- static_assert(FilterSize >= 16, "FilterSize needs to be at least 16");
- static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two");
-
- alignas(16) std::array<float,FilterSize/2> mCoeffs{};
-
- /* Some notes on this filter construction.
- *
- * A wide-band phase-shift filter needs a delay to maintain linearity. A
- * dirac impulse in the center of a time-domain buffer represents a filter
- * passing all frequencies through as-is with a pure delay. Converting that
- * to the frequency domain, adjusting the phase of each frequency bin by
- * +90 degrees, then converting back to the time domain, results in a FIR
- * filter that applies a +90 degree wide-band phase-shift.
- *
- * A particularly notable aspect of the time-domain filter response is that
- * every other coefficient is 0. This allows doubling the effective size of
- * the filter, by storing only the non-0 coefficients and double-stepping
- * over the input to apply it.
- *
- * Additionally, the resulting filter is independent of the sample rate.
- * The same filter can be applied regardless of the device's sample rate
- * and achieve the same effect.
- */
- PhaseShifterT()
- {
- using complex_d = std::complex<double>;
- constexpr size_t fft_size{FilterSize};
- constexpr size_t half_size{fft_size / 2};
-
- auto fftBuffer = std::make_unique<complex_d[]>(fft_size);
- std::fill_n(fftBuffer.get(), fft_size, complex_d{});
- fftBuffer[half_size] = 1.0;
-
- forward_fft({fftBuffer.get(), fft_size});
- for(size_t i{0};i < half_size+1;++i)
- fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()};
- for(size_t i{half_size+1};i < fft_size;++i)
- fftBuffer[i] = std::conj(fftBuffer[fft_size - i]);
- inverse_fft({fftBuffer.get(), fft_size});
-
- auto fftiter = fftBuffer.get() + half_size + (FilterSize/2 - 1);
- for(float &coeff : mCoeffs)
- {
- coeff = static_cast<float>(fftiter->real() / double{fft_size});
- fftiter -= 2;
- }
- }
-
- void process(al::span<float> dst, const float *RESTRICT src) const;
- void processAccum(al::span<float> dst, const float *RESTRICT src) const;
-
- private:
- #if defined(HAVE_NEON)
- /* There doesn't seem to be NEON intrinsics to do this kind of stipple
- * shuffling, so there's two custom methods for it.
- */
- static auto shuffle_2020(float32x4_t a, float32x4_t b)
- {
- float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))};
- ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1);
- ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2);
- ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3);
- return ret;
- }
- static auto shuffle_3131(float32x4_t a, float32x4_t b)
- {
- float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))};
- ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1);
- ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2);
- ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3);
- return ret;
- }
- static auto unpacklo(float32x4_t a, float32x4_t b)
- {
- float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))};
- return vcombine_f32(result.val[0], result.val[1]);
- }
- static auto unpackhi(float32x4_t a, float32x4_t b)
- {
- float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))};
- return vcombine_f32(result.val[0], result.val[1]);
- }
- static auto load4(float32_t a, float32_t b, float32_t c, float32_t d)
- {
- float32x4_t ret{vmovq_n_f32(a)};
- ret = vsetq_lane_f32(b, ret, 1);
- ret = vsetq_lane_f32(c, ret, 2);
- ret = vsetq_lane_f32(d, ret, 3);
- return ret;
- }
- #endif
- };
-
- template<size_t S>
- inline void PhaseShifterT<S>::process(al::span<float> dst, const float *RESTRICT src) const
- {
- #ifdef HAVE_SSE_INTRINSICS
- if(size_t todo{dst.size()>>1})
- {
- auto *out = reinterpret_cast<__m64*>(dst.data());
- do {
- __m128 r04{_mm_setzero_ps()};
- __m128 r14{_mm_setzero_ps()};
- for(size_t j{0};j < mCoeffs.size();j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
- const __m128 s0{_mm_loadu_ps(&src[j*2])};
- const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])};
-
- __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
- r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs));
-
- s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
- r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs));
- }
- src += 2;
-
- __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))};
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
-
- _mm_storel_pi(out, r4);
- ++out;
- } while(--todo);
- }
- if((dst.size()&1))
- {
- __m128 r4{_mm_setzero_ps()};
- for(size_t j{0};j < mCoeffs.size();j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
- const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
- r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
-
- dst.back() = _mm_cvtss_f32(r4);
- }
-
- #elif defined(HAVE_NEON)
-
- size_t pos{0};
- if(size_t todo{dst.size()>>1})
- {
- do {
- float32x4_t r04{vdupq_n_f32(0.0f)};
- float32x4_t r14{vdupq_n_f32(0.0f)};
- for(size_t j{0};j < mCoeffs.size();j+=4)
- {
- const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
- const float32x4_t s0{vld1q_f32(&src[j*2])};
- const float32x4_t s1{vld1q_f32(&src[j*2 + 4])};
-
- r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs);
- r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs);
- }
- src += 2;
-
- float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))};
- float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))};
-
- vst1_f32(&dst[pos], r2);
- pos += 2;
- } while(--todo);
- }
- if((dst.size()&1))
- {
- float32x4_t r4{vdupq_n_f32(0.0f)};
- for(size_t j{0};j < mCoeffs.size();j+=4)
- {
- const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
- const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
- r4 = vmlaq_f32(r4, s, coeffs);
- }
- r4 = vaddq_f32(r4, vrev64q_f32(r4));
- dst[pos] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
- }
-
- #else
-
- for(float &output : dst)
- {
- float ret{0.0f};
- for(size_t j{0};j < mCoeffs.size();++j)
- ret += src[j*2] * mCoeffs[j];
-
- output = ret;
- ++src;
- }
- #endif
- }
-
- template<size_t S>
- inline void PhaseShifterT<S>::processAccum(al::span<float> dst, const float *RESTRICT src) const
- {
- #ifdef HAVE_SSE_INTRINSICS
- if(size_t todo{dst.size()>>1})
- {
- auto *out = reinterpret_cast<__m64*>(dst.data());
- do {
- __m128 r04{_mm_setzero_ps()};
- __m128 r14{_mm_setzero_ps()};
- for(size_t j{0};j < mCoeffs.size();j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
- const __m128 s0{_mm_loadu_ps(&src[j*2])};
- const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])};
-
- __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
- r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs));
-
- s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
- r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs));
- }
- src += 2;
-
- __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))};
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
-
- _mm_storel_pi(out, _mm_add_ps(_mm_loadl_pi(_mm_undefined_ps(), out), r4));
- ++out;
- } while(--todo);
- }
- if((dst.size()&1))
- {
- __m128 r4{_mm_setzero_ps()};
- for(size_t j{0};j < mCoeffs.size();j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
- const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
- r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
-
- dst.back() += _mm_cvtss_f32(r4);
- }
-
- #elif defined(HAVE_NEON)
-
- size_t pos{0};
- if(size_t todo{dst.size()>>1})
- {
- do {
- float32x4_t r04{vdupq_n_f32(0.0f)};
- float32x4_t r14{vdupq_n_f32(0.0f)};
- for(size_t j{0};j < mCoeffs.size();j+=4)
- {
- const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
- const float32x4_t s0{vld1q_f32(&src[j*2])};
- const float32x4_t s1{vld1q_f32(&src[j*2 + 4])};
-
- r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs);
- r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs);
- }
- src += 2;
-
- float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))};
- float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))};
-
- vst1_f32(&dst[pos], vadd_f32(vld1_f32(&dst[pos]), r2));
- pos += 2;
- } while(--todo);
- }
- if((dst.size()&1))
- {
- float32x4_t r4{vdupq_n_f32(0.0f)};
- for(size_t j{0};j < mCoeffs.size();j+=4)
- {
- const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
- const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
- r4 = vmlaq_f32(r4, s, coeffs);
- }
- r4 = vaddq_f32(r4, vrev64q_f32(r4));
- dst[pos] += vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
- }
-
- #else
-
- for(float &output : dst)
- {
- float ret{0.0f};
- for(size_t j{0};j < mCoeffs.size();++j)
- ret += src[j*2] * mCoeffs[j];
-
- output += ret;
- ++src;
- }
- #endif
- }
-
- #endif /* PHASE_SHIFTER_H */
|