|
|
-
- #include "config.h"
-
- #include <algorithm>
- #include <array>
- #include <complex>
- #include <cstddef>
- #include <functional>
- #include <iterator>
- #include <memory>
- #include <stdint.h>
- #include <utility>
-
- #ifdef HAVE_SSE_INTRINSICS
- #include <xmmintrin.h>
- #elif defined(HAVE_NEON)
- #include <arm_neon.h>
- #endif
-
- #include "albyte.h"
- #include "alcomplex.h"
- #include "almalloc.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "base.h"
- #include "core/ambidefs.h"
- #include "core/bufferline.h"
- #include "core/buffer_storage.h"
- #include "core/context.h"
- #include "core/devformat.h"
- #include "core/device.h"
- #include "core/effectslot.h"
- #include "core/filters/splitter.h"
- #include "core/fmt_traits.h"
- #include "core/mixer.h"
- #include "intrusive_ptr.h"
- #include "polyphase_resampler.h"
- #include "vector.h"
-
-
- namespace {
-
- /* Convolution reverb is implemented using a segmented overlap-add method. The
- * impulse response is broken up into multiple segments of 128 samples, and
- * each segment has an FFT applied with a 256-sample buffer (the latter half
- * left silent) to get its frequency-domain response. The resulting response
- * has its positive/non-mirrored frequencies saved (129 bins) in each segment.
- *
- * Input samples are similarly broken up into 128-sample segments, with an FFT
- * applied to each new incoming segment to get its 129 bins. A history of FFT'd
- * input segments is maintained, equal to the length of the impulse response.
- *
- * To apply the reverberation, each impulse response segment is convolved with
- * its paired input segment (using complex multiplies, far cheaper than FIRs),
- * accumulating into a 256-bin FFT buffer. The input history is then shifted to
- * align with later impulse response segments for next time.
- *
- * An inverse FFT is then applied to the accumulated FFT buffer to get a 256-
- * sample time-domain response for output, which is split in two halves. The
- * first half is the 128-sample output, and the second half is a 128-sample
- * (really, 127) delayed extension, which gets added to the output next time.
- * Convolving two time-domain responses of lengths N and M results in a time-
- * domain signal of length N+M-1, and this holds true regardless of the
- * convolution being applied in the frequency domain, so these "overflow"
- * samples need to be accounted for.
- *
- * To avoid a delay with gathering enough input samples to apply an FFT with,
- * the first segment is applied directly in the time-domain as the samples come
- * in. Once enough have been retrieved, the FFT is applied on the input and
- * it's paired with the remaining (FFT'd) filter segments for processing.
- */
-
-
- void LoadSamples(double *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
- const size_t samples) noexcept
- {
- #define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
- switch(srctype)
- {
- HANDLE_FMT(FmtUByte);
- HANDLE_FMT(FmtShort);
- HANDLE_FMT(FmtFloat);
- HANDLE_FMT(FmtDouble);
- HANDLE_FMT(FmtMulaw);
- HANDLE_FMT(FmtAlaw);
- }
- #undef HANDLE_FMT
- }
-
-
- inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
- {
- switch(scaletype)
- {
- case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
- case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
- case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
- case AmbiScaling::N3D: break;
- }
- return AmbiScale::FromN3D();
- }
-
- inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
- {
- if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
- return AmbiIndex::FromACN();
- }
-
- inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
- {
- if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
- return AmbiIndex::FromACN2D();
- }
-
-
- struct ChanMap {
- Channel channel;
- float angle;
- float elevation;
- };
-
- constexpr float Deg2Rad(float x) noexcept
- { return static_cast<float>(al::numbers::pi / 180.0 * x); }
-
-
- using complex_d = std::complex<double>;
-
- constexpr size_t ConvolveUpdateSize{256};
- constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
-
-
- void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *RESTRICT filter)
- {
- #ifdef HAVE_SSE_INTRINSICS
- for(float &output : dst)
- {
- __m128 r4{_mm_setzero_ps()};
- for(size_t j{0};j < ConvolveUpdateSamples;j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&filter[j])};
- const __m128 s{_mm_loadu_ps(&src[j])};
-
- r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- output = _mm_cvtss_f32(r4);
-
- ++src;
- }
-
- #elif defined(HAVE_NEON)
-
- for(float &output : dst)
- {
- float32x4_t r4{vdupq_n_f32(0.0f)};
- for(size_t j{0};j < ConvolveUpdateSamples;j+=4)
- r4 = vmlaq_f32(r4, vld1q_f32(&src[j]), vld1q_f32(&filter[j]));
- r4 = vaddq_f32(r4, vrev64q_f32(r4));
- output = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
-
- ++src;
- }
-
- #else
-
- for(float &output : dst)
- {
- float ret{0.0f};
- for(size_t j{0};j < ConvolveUpdateSamples;++j)
- ret += src[j] * filter[j];
- output = ret;
- ++src;
- }
- #endif
- }
-
- struct ConvolutionState final : public EffectState {
- FmtChannels mChannels{};
- AmbiLayout mAmbiLayout{};
- AmbiScaling mAmbiScaling{};
- uint mAmbiOrder{};
-
- size_t mFifoPos{0};
- std::array<float,ConvolveUpdateSamples*2> mInput{};
- al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter;
- al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput;
-
- alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{};
-
- size_t mCurrentSegment{0};
- size_t mNumConvolveSegs{0};
-
- struct ChannelData {
- alignas(16) FloatBufferLine mBuffer{};
- float mHfScale{};
- BandSplitter mFilter{};
- float Current[MAX_OUTPUT_CHANNELS]{};
- float Target[MAX_OUTPUT_CHANNELS]{};
- };
- using ChannelDataArray = al::FlexArray<ChannelData>;
- std::unique_ptr<ChannelDataArray> mChans;
- std::unique_ptr<complex_d[]> mComplexData;
-
-
- ConvolutionState() = default;
- ~ConvolutionState() override = default;
-
- void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
- void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
- void (ConvolutionState::*mMix)(const al::span<FloatBufferLine>,const size_t)
- {&ConvolutionState::NormalMix};
-
- void deviceUpdate(const DeviceBase *device, const Buffer &buffer) override;
- void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
-
- DEF_NEWDEL(ConvolutionState)
- };
-
- void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
- const size_t samplesToDo)
- {
- for(auto &chan : *mChans)
- MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
- samplesToDo, 0);
- }
-
- void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
- const size_t samplesToDo)
- {
- for(auto &chan : *mChans)
- {
- const al::span<float> src{chan.mBuffer.data(), samplesToDo};
- chan.mFilter.processHfScale(src, chan.mHfScale);
- MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0);
- }
- }
-
-
- void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buffer)
- {
- constexpr uint MaxConvolveAmbiOrder{1u};
-
- mFifoPos = 0;
- mInput.fill(0.0f);
- decltype(mFilter){}.swap(mFilter);
- decltype(mOutput){}.swap(mOutput);
- mFftBuffer.fill(complex_d{});
-
- mCurrentSegment = 0;
- mNumConvolveSegs = 0;
-
- mChans = nullptr;
- mComplexData = nullptr;
-
- /* An empty buffer doesn't need a convolution filter. */
- if(!buffer.storage || buffer.storage->mSampleLen < 1) return;
-
- constexpr size_t m{ConvolveUpdateSize/2 + 1};
- auto bytesPerSample = BytesFromFmt(buffer.storage->mType);
- auto realChannels = ChannelsFromFmt(buffer.storage->mChannels, buffer.storage->mAmbiOrder);
- auto numChannels = ChannelsFromFmt(buffer.storage->mChannels,
- minu(buffer.storage->mAmbiOrder, MaxConvolveAmbiOrder));
-
- mChans = ChannelDataArray::Create(numChannels);
-
- /* The impulse response needs to have the same sample rate as the input and
- * output. The bsinc24 resampler is decent, but there is high-frequency
- * attenation that some people may be able to pick up on. Since this is
- * called very infrequently, go ahead and use the polyphase resampler.
- */
- PPhaseResampler resampler;
- if(device->Frequency != buffer.storage->mSampleRate)
- resampler.init(buffer.storage->mSampleRate, device->Frequency);
- const auto resampledCount = static_cast<uint>(
- (uint64_t{buffer.storage->mSampleLen}*device->Frequency+(buffer.storage->mSampleRate-1)) /
- buffer.storage->mSampleRate);
-
- const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
- for(auto &e : *mChans)
- e.mFilter = splitter;
-
- mFilter.resize(numChannels, {});
- mOutput.resize(numChannels, {});
-
- /* Calculate the number of segments needed to hold the impulse response and
- * the input history (rounded up), and allocate them. Exclude one segment
- * which gets applied as a time-domain FIR filter. Make sure at least one
- * segment is allocated to simplify handling.
- */
- mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
- mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1;
-
- const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
- mComplexData = std::make_unique<complex_d[]>(complex_length);
- std::fill_n(mComplexData.get(), complex_length, complex_d{});
-
- mChannels = buffer.storage->mChannels;
- mAmbiLayout = buffer.storage->mAmbiLayout;
- mAmbiScaling = buffer.storage->mAmbiScaling;
- mAmbiOrder = minu(buffer.storage->mAmbiOrder, MaxConvolveAmbiOrder);
-
- auto srcsamples = std::make_unique<double[]>(maxz(buffer.storage->mSampleLen, resampledCount));
- complex_d *filteriter = mComplexData.get() + mNumConvolveSegs*m;
- for(size_t c{0};c < numChannels;++c)
- {
- /* Load the samples from the buffer, and resample to match the device. */
- LoadSamples(srcsamples.get(), buffer.samples.data() + bytesPerSample*c, realChannels,
- buffer.storage->mType, buffer.storage->mSampleLen);
- if(device->Frequency != buffer.storage->mSampleRate)
- resampler.process(buffer.storage->mSampleLen, srcsamples.get(), resampledCount,
- srcsamples.get());
-
- /* Store the first segment's samples in reverse in the time-domain, to
- * apply as a FIR filter.
- */
- const size_t first_size{minz(resampledCount, ConvolveUpdateSamples)};
- std::transform(srcsamples.get(), srcsamples.get()+first_size, mFilter[c].rbegin(),
- [](const double d) noexcept -> float { return static_cast<float>(d); });
-
- size_t done{first_size};
- for(size_t s{0};s < mNumConvolveSegs;++s)
- {
- const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
-
- auto iter = std::copy_n(&srcsamples[done], todo, mFftBuffer.begin());
- done += todo;
- std::fill(iter, mFftBuffer.end(), complex_d{});
-
- forward_fft(mFftBuffer);
- filteriter = std::copy_n(mFftBuffer.cbegin(), m, filteriter);
- }
- }
- }
-
-
- void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot,
- const EffectProps* /*props*/, const EffectTarget target)
- {
- /* NOTE: Stereo and Rear are slightly different from normal mixing (as
- * defined in alu.cpp). These are 45 degrees from center, rather than the
- * 30 degrees used there.
- *
- * TODO: LFE is not mixed to output. This will require each buffer channel
- * to have its own output target since the main mixing buffer won't have an
- * LFE channel (due to being B-Format).
- */
- static constexpr ChanMap MonoMap[1]{
- { FrontCenter, 0.0f, 0.0f }
- }, StereoMap[2]{
- { FrontLeft, Deg2Rad(-45.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }
- }, RearMap[2]{
- { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
- }, QuadMap[4]{
- { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
- { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
- }, X51Map[6]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
- }, X61Map[7]{
- { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
- }, X71Map[8]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
- };
-
- if(mNumConvolveSegs < 1)
- return;
-
- mMix = &ConvolutionState::NormalMix;
-
- for(auto &chan : *mChans)
- std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f);
- const float gain{slot->Gain};
- /* TODO: UHJ should be decoded to B-Format and processed that way, since
- * there's no telling if it can ever do a direct-out mix (even if the
- * device is outputing UHJ, the effect slot can feed another effect that's
- * not UHJ).
- *
- * Not that UHJ should really ever be used for convolution, but it's a
- * valid format regardless.
- */
- if((mChannels == FmtUHJ2 || mChannels == FmtUHJ3 || mChannels == FmtUHJ4) && target.RealOut
- && target.RealOut->ChannelIndex[FrontLeft] != INVALID_CHANNEL_INDEX
- && target.RealOut->ChannelIndex[FrontRight] != INVALID_CHANNEL_INDEX)
- {
- mOutTarget = target.RealOut->Buffer;
- const uint lidx = target.RealOut->ChannelIndex[FrontLeft];
- const uint ridx = target.RealOut->ChannelIndex[FrontRight];
- (*mChans)[0].Target[lidx] = gain;
- (*mChans)[1].Target[ridx] = gain;
- }
- else if(IsBFormat(mChannels))
- {
- DeviceBase *device{context->mDevice};
- if(device->mAmbiOrder > mAmbiOrder)
- {
- mMix = &ConvolutionState::UpsampleMix;
- const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder);
- (*mChans)[0].mHfScale = scales[0];
- for(size_t i{1};i < mChans->size();++i)
- (*mChans)[i].mHfScale = scales[1];
- }
- mOutTarget = target.Main->Buffer;
-
- auto&& scales = GetAmbiScales(mAmbiScaling);
- const uint8_t *index_map{(mChannels == FmtBFormat2D) ?
- GetAmbi2DLayout(mAmbiLayout).data() :
- GetAmbiLayout(mAmbiLayout).data()};
-
- std::array<float,MaxAmbiChannels> coeffs{};
- for(size_t c{0u};c < mChans->size();++c)
- {
- const size_t acn{index_map[c]};
- coeffs[acn] = scales[acn];
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[c].Target);
- coeffs[acn] = 0.0f;
- }
- }
- else
- {
- DeviceBase *device{context->mDevice};
- al::span<const ChanMap> chanmap{};
- switch(mChannels)
- {
- case FmtMono: chanmap = MonoMap; break;
- case FmtSuperStereo:
- case FmtStereo: chanmap = StereoMap; break;
- case FmtRear: chanmap = RearMap; break;
- case FmtQuad: chanmap = QuadMap; break;
- case FmtX51: chanmap = X51Map; break;
- case FmtX61: chanmap = X61Map; break;
- case FmtX71: chanmap = X71Map; break;
- case FmtBFormat2D:
- case FmtBFormat3D:
- case FmtUHJ2:
- case FmtUHJ3:
- case FmtUHJ4:
- break;
- }
-
- mOutTarget = target.Main->Buffer;
- if(device->mRenderMode == RenderMode::Pairwise)
- {
- auto ScaleAzimuthFront = [](float azimuth, float scale) -> float
- {
- constexpr float half_pi{al::numbers::pi_v<float>*0.5f};
- const float abs_azi{std::fabs(azimuth)};
- if(!(abs_azi >= half_pi))
- return std::copysign(minf(abs_azi*scale, half_pi), azimuth);
- return azimuth;
- };
-
- for(size_t i{0};i < chanmap.size();++i)
- {
- if(chanmap[i].channel == LFE) continue;
- const auto coeffs = CalcAngleCoeffs(ScaleAzimuthFront(chanmap[i].angle, 2.0f),
- chanmap[i].elevation, 0.0f);
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
- }
- }
- else for(size_t i{0};i < chanmap.size();++i)
- {
- if(chanmap[i].channel == LFE) continue;
- const auto coeffs = CalcAngleCoeffs(chanmap[i].angle, chanmap[i].elevation, 0.0f);
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
- }
- }
- }
-
- void ConvolutionState::process(const size_t samplesToDo,
- const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- if(mNumConvolveSegs < 1)
- return;
-
- constexpr size_t m{ConvolveUpdateSize/2 + 1};
- size_t curseg{mCurrentSegment};
- auto &chans = *mChans;
-
- for(size_t base{0u};base < samplesToDo;)
- {
- const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};
-
- std::copy_n(samplesIn[0].begin() + base, todo,
- mInput.begin()+ConvolveUpdateSamples+mFifoPos);
-
- /* Apply the FIR for the newly retrieved input samples, and combine it
- * with the inverse FFT'd output samples.
- */
- for(size_t c{0};c < chans.size();++c)
- {
- auto buf_iter = chans[c].mBuffer.begin() + base;
- apply_fir({std::addressof(*buf_iter), todo}, mInput.data()+1 + mFifoPos,
- mFilter[c].data());
-
- auto fifo_iter = mOutput[c].begin() + mFifoPos;
- std::transform(fifo_iter, fifo_iter+todo, buf_iter, buf_iter, std::plus<>{});
- }
-
- mFifoPos += todo;
- base += todo;
-
- /* Check whether the input buffer is filled with new samples. */
- if(mFifoPos < ConvolveUpdateSamples) break;
- mFifoPos = 0;
-
- /* Move the newest input to the front for the next iteration's history. */
- std::copy(mInput.cbegin()+ConvolveUpdateSamples, mInput.cend(), mInput.begin());
-
- /* Calculate the frequency domain response and add the relevant
- * frequency bins to the FFT history.
- */
- auto fftiter = std::copy_n(mInput.cbegin(), ConvolveUpdateSamples, mFftBuffer.begin());
- std::fill(fftiter, mFftBuffer.end(), complex_d{});
- forward_fft(mFftBuffer);
-
- std::copy_n(mFftBuffer.cbegin(), m, &mComplexData[curseg*m]);
-
- const complex_d *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
- for(size_t c{0};c < chans.size();++c)
- {
- std::fill_n(mFftBuffer.begin(), m, complex_d{});
-
- /* Convolve each input segment with its IR filter counterpart
- * (aligned in time).
- */
- const complex_d *RESTRICT input{&mComplexData[curseg*m]};
- for(size_t s{curseg};s < mNumConvolveSegs;++s)
- {
- for(size_t i{0};i < m;++i,++input,++filter)
- mFftBuffer[i] += *input * *filter;
- }
- input = mComplexData.get();
- for(size_t s{0};s < curseg;++s)
- {
- for(size_t i{0};i < m;++i,++input,++filter)
- mFftBuffer[i] += *input * *filter;
- }
-
- /* Reconstruct the mirrored/negative frequencies to do a proper
- * inverse FFT.
- */
- for(size_t i{m};i < ConvolveUpdateSize;++i)
- mFftBuffer[i] = std::conj(mFftBuffer[ConvolveUpdateSize-i]);
-
- /* Apply iFFT to get the 256 (really 255) samples for output. The
- * 128 output samples are combined with the last output's 127
- * second-half samples (and this output's second half is
- * subsequently saved for next time).
- */
- inverse_fft(mFftBuffer);
-
- /* The iFFT'd response is scaled up by the number of bins, so apply
- * the inverse to normalize the output.
- */
- for(size_t i{0};i < ConvolveUpdateSamples;++i)
- mOutput[c][i] =
- static_cast<float>(mFftBuffer[i].real() * (1.0/double{ConvolveUpdateSize})) +
- mOutput[c][ConvolveUpdateSamples+i];
- for(size_t i{0};i < ConvolveUpdateSamples;++i)
- mOutput[c][ConvolveUpdateSamples+i] =
- static_cast<float>(mFftBuffer[ConvolveUpdateSamples+i].real() *
- (1.0/double{ConvolveUpdateSize}));
- }
-
- /* Shift the input history. */
- curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1);
- }
- mCurrentSegment = curseg;
-
- /* Finally, mix to the output. */
- (this->*mMix)(samplesOut, samplesToDo);
- }
-
-
- struct ConvolutionStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new ConvolutionState{}}; }
- };
-
- } // namespace
-
- EffectStateFactory *ConvolutionStateFactory_getFactory()
- {
- static ConvolutionStateFactory ConvolutionFactory{};
- return &ConvolutionFactory;
- }
|