💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

109 lines
3.4 KiB

/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include "entity/systems/orbit.hpp"
#include "physics/orbit/orbit.hpp"
#include <iostream>
namespace entity {
namespace system {
orbit::orbit(entity::registry& registry):
updatable(registry),
universal_time(0.0),
time_scale(1.0),
ke_iterations(10),
ke_tolerance(1e-6)
{
registry.on_construct<entity::component::orbit>().connect<&orbit::on_orbit_construct>(this);
registry.on_replace<entity::component::orbit>().connect<&orbit::on_orbit_replace>(this);
}
void orbit::update(double t, double dt)
{
// Add scaled timestep to current time
set_universal_time(universal_time + dt * time_scale);
// Propagate orbits
registry.view<component::orbit>().each(
[&](entity::id entity_id, auto& orbit)
{
// Determine mean anomaly at current time
const double ma = orbit.elements.ma + orbit.mean_motion * this->universal_time;
// Solve Kepler's equation for eccentric anomaly (E)
const double ea = physics::orbit::anomaly::mean_to_eccentric(orbit.elements.ec, ma, ke_iterations, ke_tolerance);
// Calculate Cartesian orbital position in the PQW frame
math::vector3<double> pqw_position = physics::orbit::frame::pqw::cartesian(orbit.elements.ec, orbit.elements.a, ea, orbit.semiminor_axis);
// Transform orbital position from PQW frame to BCI frame
orbit.bci_position = orbit.pqw_to_bci.transform(pqw_position);
});
// Update orbital positions in the ICRF frame
registry.view<component::orbit>().each(
[&](entity::id entity_id, auto& orbit)
{
orbit.icrf_position = orbit.bci_position;
entity::id parent = orbit.parent;
while (parent != entt::null)
{
const component::orbit& parent_orbit = registry.get<component::orbit>(parent);
orbit.icrf_position += parent_orbit.bci_position;
parent = parent_orbit.parent;
}
});
}
void orbit::set_universal_time(double time)
{
universal_time = time;
}
void orbit::set_time_scale(double scale)
{
time_scale = scale;
}
void orbit::on_orbit_construct(entity::registry& registry, entity::id entity_id, entity::component::orbit& component)
{
component.semiminor_axis = physics::orbit::semiminor_axis(component.elements.a, component.elements.ec);
component.pqw_to_bci = physics::orbit::frame::pqw::to_bci
(
component.elements.om,
component.elements.in,
component.elements.w
);
}
void orbit::on_orbit_replace(entity::registry& registry, entity::id entity_id, entity::component::orbit& component)
{
component.semiminor_axis = physics::orbit::semiminor_axis(component.elements.a, component.elements.ec);
component.pqw_to_bci = physics::orbit::frame::pqw::to_bci
(
component.elements.om,
component.elements.in,
component.elements.w
);
}
} // namespace system
} // namespace entity