💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
5.2 KiB

/*
* Copyright (C) 2023 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include <engine/scene/camera.hpp>
#include <engine/math/quaternion.hpp>
#include <engine/math/projection.hpp>
namespace scene {
geom::ray<float, 3> camera::pick(const math::fvec2& ndc) const
{
const auto near = m_inv_view_projection * math::fvec4{ndc[0], ndc[1], 1.0f, 1.0f};
const auto far = m_inv_view_projection * math::fvec4{ndc[0], ndc[1], 0.0f, 1.0f};
const auto origin = math::fvec3(near) / near[3];
const auto direction = math::normalize(math::fvec3(far) / far[3] - origin);
return {origin, direction};
}
math::fvec3 camera::project(const math::fvec3& object, const math::fvec4& viewport) const
{
math::fvec4 result = m_view_projection * math::fvec4{object[0], object[1], object[2], 1.0f};
result /= result[3];
result.x() = result.x() * viewport[2] + viewport[0];
result.y() = result.y() * viewport[3] + viewport[1];
return math::fvec3(result);
}
math::fvec3 camera::unproject(const math::fvec3& window, const math::fvec4& viewport) const
{
math::fvec4 result;
result[0] = ((window[0] - viewport[0]) / viewport[2]) * 2.0f - 1.0f;
result[1] = ((window[1] - viewport[1]) / viewport[3]) * 2.0f - 1.0f;
//result[2] = window[2] * 2.0f - 1.0f; z: [-1, 1]
//result[2] = window[2]; // z: [0, 1]
result[2] = 1.0f - window[2]; // z: [1, 0]
result[3] = 1.0f;
result = m_inv_view_projection * result;
return math::fvec3(result) * (1.0f / result[3]);
}
void camera::set_perspective(float vertical_fov, float aspect_ratio, float clip_near, float clip_far)
{
// Set projection mode to perspective
m_orthographic = false;
// Update perspective projection parameters
m_vertical_fov = vertical_fov;
m_aspect_ratio = aspect_ratio;
m_clip_near = clip_near;
m_clip_far = clip_far;
// Recalculate projection matrix (reversed depth) and its inverse
std::tie(m_projection, m_inv_projection) = math::perspective_half_z_inv(m_vertical_fov, m_aspect_ratio, m_clip_far, m_clip_near);
// Recalculate view-projection matrix
m_view_projection = m_projection * m_view;
m_inv_view_projection = m_inv_view * m_inv_projection;
// Recalculate view frustum
update_frustum();
}
void camera::set_vertical_fov(float vertical_fov)
{
if (!m_orthographic)
{
set_perspective(vertical_fov, m_aspect_ratio, m_clip_near, m_clip_far);
}
}
void camera::set_orthographic(float clip_left, float clip_right, float clip_bottom, float clip_top, float clip_near, float clip_far)
{
// Set projection mode to orthographic
m_orthographic = true;
// Update signed distances to clipping planes
m_clip_left = clip_left;
m_clip_right = clip_right;
m_clip_bottom = clip_bottom;
m_clip_top = clip_top;
m_clip_near = clip_near;
m_clip_far = clip_far;
// Recalculate projection matrix (reversed depth) and its inverse
std::tie(m_projection, m_inv_projection) = math::ortho_half_z_inv(m_clip_left, m_clip_right, m_clip_bottom, m_clip_top, m_clip_far, m_clip_near);
// Update view-projection matrix and its inverse
m_view_projection = m_projection * m_view;
m_inv_view_projection = m_inv_view * m_inv_projection;
// Update view frustum
update_frustum();
}
void camera::set_exposure_value(float ev100)
{
m_exposure_value = ev100;
// m_exposure_normalization = 1.0f / (std::exp2(m_exposure_value) * 1.2f);
m_exposure_normalization = 1.0f / (std::exp2(m_exposure_value));
}
void camera::transformed()
{
// Update basis vectors
m_forward = get_rotation() * math::fvec3{0.0f, 0.0f, -1.0f};
m_up = get_rotation() * math::fvec3{0.0f, 1.0f, 0.0f};
// Recalculate view matrix and its inverse
std::tie(m_view, m_inv_view) = math::look_at_rh_inv(get_translation(), get_translation() + m_forward, m_up);
// Update view-projection matrix and its inverse
m_view_projection = m_projection * m_view;
m_inv_view_projection = m_inv_view * m_inv_projection;
// Update view frustum
update_frustum();
}
void camera::update_frustum()
{
// Recalculate view frustum
m_view_frustum.extract(m_view_projection);
// Reverse half z clip-space coordinates of a cube
constexpr math::fvec4 clip_space_cube[8] =
{
{-1, -1, 1, 1}, // NBL
{ 1, -1, 1, 1}, // NBR
{-1, 1, 1, 1}, // NTL
{ 1, 1, 1, 1}, // NTR
{-1, -1, 0, 1}, // FBL
{ 1, -1, 0, 1}, // FBR
{-1, 1, 0, 1}, // FTL
{ 1, 1, 0, 1} // FTR
};
// Update bounds
m_bounds = {math::fvec3::infinity(), -math::fvec3::infinity()};
for (std::size_t i = 0; i < 8; ++i)
{
const math::fvec4 frustum_corner = m_inv_view_projection * clip_space_cube[i];
m_bounds.extend(math::fvec3(frustum_corner) / frustum_corner[3]);
}
}
} // namespace scene