💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

1731 lines
54 KiB

/*
* Copyright (C) 2017 Christopher J. Howard
*
* This file is part of Antkeeper Source Code.
*
* Antkeeper Source Code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper Source Code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper Source Code. If not, see <http://www.gnu.org/licenses/>.
*/
#include "render-passes.hpp"
#include "materials.hpp"
#include <iostream>
#include <limits>
ClearRenderPass::ClearRenderPass():
clearColor(true),
clearDepth(true),
clearStencil(true),
color(0.0f),
depth(1.0f),
index(0)
{}
bool ClearRenderPass::load(const RenderContext* renderContext)
{
return true;
}
void ClearRenderPass::unload()
{}
void ClearRenderPass::render(RenderContext* renderContext)
{
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
GLbitfield mask = 0;
if (clearColor)
{
mask |= GL_COLOR_BUFFER_BIT;
glClearColor(color[0], color[1], color[2], color[3]);
}
if (clearDepth)
{
mask |= GL_DEPTH_BUFFER_BIT;
glClearDepth(depth);
}
if (clearStencil)
{
mask |= GL_STENCIL_BUFFER_BIT;
glClearStencil(index);
}
glClear(mask);
}
void ClearRenderPass::setClear(bool color, bool depth, bool stencil)
{
clearColor = color;
clearDepth = depth;
clearStencil = stencil;
}
void ClearRenderPass::setClearColor(const Vector4& color)
{
this->color = color;
}
void ClearRenderPass::setClearDepth(float depth)
{
this->depth = depth;
}
void ClearRenderPass::setClearStencil(int index)
{
this->index = index;
}
ShadowMapRenderPass::ShadowMapRenderPass():
unskinnedShader(nullptr),
skinnedShader(nullptr),
croppedShadowMapViewports(nullptr),
viewCamera(nullptr),
splitViewFrustum(nullptr),
cropMatrices(nullptr),
tileMatrices(nullptr)
{}
bool ShadowMapRenderPass::load(const RenderContext* renderContext)
{
// Set maximum number of bones for skinned meshes
maxBoneCount = 64;
// Set number of frustum splits
frustumSplitCount = 4;
// Create split view frustum
splitViewFrustum = new SplitViewFrustum(frustumSplitCount);
// Determine resolution of shadow maps
shadowMapResolution = 4096;
croppedShadowMapResolution = shadowMapResolution >> 1;
// Allocate viewports
croppedShadowMapViewports = new Vector4[frustumSplitCount];
// Setup viewports
for (int i = 0; i < frustumSplitCount; ++i)
{
int x = i % 2;
int y = i / 2;
Vector4* viewport = &croppedShadowMapViewports[i];
(*viewport)[0] = static_cast<float>(x * croppedShadowMapResolution);
(*viewport)[1] = static_cast<float>(y * croppedShadowMapResolution);
(*viewport)[2] = static_cast<float>(croppedShadowMapResolution);
(*viewport)[3] = static_cast<float>(croppedShadowMapResolution);
}
// Allocate matrices
cropMatrices = new Matrix4[frustumSplitCount];
tileMatrices = new Matrix4[frustumSplitCount];
// Setup tile matrices
Matrix4 tileScale = glm::scale(Vector3(0.5f, 0.5f, 1.0f));
for (int i = 0; i < frustumSplitCount; ++i)
{
float x = static_cast<float>(i % 2) * 0.5f;
float y = static_cast<float>(i / 2) * 0.5f;
tileMatrices[i] = glm::translate(Vector3(x, y, 0.0f)) * tileScale;
}
// Setup shader parameters
modelViewProjectionParam = parameterSet.addParameter("modelViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
matrixPaletteParam = parameterSet.addParameter("matrixPalette", ShaderParameter::Type::MATRIX_4, maxBoneCount);
// Load unskinned shader
shaderLoader.undefine();
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
unskinnedShader = shaderLoader.load("data/shaders/depth-pass.glsl", &parameterSet);
if (!unskinnedShader)
{
return false;
}
// Load skinned shader
shaderLoader.define("SKINNED");
shaderLoader.define("VERTEX_BONE_INDICES", EMERGENT_VERTEX_BONE_INDICES);
shaderLoader.define("VERTEX_BONE_WEIGHTS", EMERGENT_VERTEX_BONE_WEIGHTS);
shaderLoader.define("MAX_BONE_COUNT", maxBoneCount);
skinnedShader = shaderLoader.load("data/shaders/depth-pass.glsl", &parameterSet);
if (!skinnedShader)
{
return false;
}
return true;
}
void ShadowMapRenderPass::unload()
{
delete unskinnedShader;
unskinnedShader = nullptr;
delete skinnedShader;
skinnedShader = nullptr;
delete[] croppedShadowMapViewports;
croppedShadowMapViewports = nullptr;
delete splitViewFrustum;
splitViewFrustum = nullptr;
delete[] cropMatrices;
cropMatrices = nullptr;
delete[] tileMatrices;
tileMatrices = nullptr;
parameterSet.removeParameters();
}
void ShadowMapRenderPass::render(RenderContext* renderContext)
{
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Clear the framebuffer depth
glClear(GL_DEPTH_BUFFER_BIT);
// Enable depth testing
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LESS);
// Draw front and back faces
glDisable(GL_CULL_FACE);
// Disable alpha blending
glDisable(GL_BLEND);
//const Camera& lightCamera = *(renderContext->camera);
const std::list<RenderOperation>* operations = renderContext->queue->getOperations();
Shader* shader = nullptr;
// Update split view frustum
//splitViewFrustum->setMatrices(viewCamera->getView(), viewCamera->getProjection());
const ViewFrustum& viewFrustum = viewCamera->getViewFrustum();
// Find center of view frustum
Vector3 center = Vector3(0.0f);
for (std::size_t i = 0; i < viewFrustum.getCornerCount(); ++i)
{
center += viewFrustum.getCorner(i);
}
center = center * 1.0f / static_cast<float>(viewFrustum.getCornerCount());
// Position light camera in center of view frustum
//lightCamera->lookAt(center, center + lightCamera->getForward(), lightCamera->getUp());
// Calculate split distances
float clipNear = viewCamera->getClipNear();
float clipFar = viewCamera->getClipFar();
float* splitDistances = new float[frustumSplitCount + 1];
float splitSchemeWeight = 0.5f;
for (std::size_t i = 1; i < frustumSplitCount; ++i)
{
float part = static_cast<float>(i) / static_cast<float>(frustumSplitCount);
// Calculate uniform split distance
float uniformSplitDistance = clipNear + (clipFar - clipNear) * part;
// Calculate logarithmic split distance
float logSplitDistance = clipNear * std::pow(clipFar / clipNear, part);
// Interpolate between uniform and logarithmic split distances
splitDistances[i] = logSplitDistance * splitSchemeWeight + uniformSplitDistance * (1.0f - splitSchemeWeight);
}
splitDistances[0] = clipNear;
splitDistances[frustumSplitCount] = clipFar;
// For each frustum split
for (int i = 0; i < frustumSplitCount; ++i)
{
// Calculate crop matrix
{
ViewFrustum frustumSplit;
// Determine near and far distances for this subfrustum
float splitNear = splitDistances[0];
float splitFar = splitDistances[4];
// Calculate subfrustum projection matrix
Matrix4 splitProjection = glm::ortho(viewCamera->getClipLeft(), viewCamera->getClipRight(), viewCamera->getClipBottom(), viewCamera->getClipTop(), splitNear, splitFar);
// Set subfrustum matrices
frustumSplit.setMatrices(viewCamera->getView(), splitProjection);
// Create AABB containing the frustum split corners
AABB frustumSplitBounds(Vector3(std::numeric_limits<float>::infinity()), Vector3(-std::numeric_limits<float>::infinity()));
for (std::size_t j = 0; j < frustumSplit.getCornerCount(); ++j)
{
frustumSplitBounds.add(frustumSplit.getCorner(j));
}
// Transform frustum split bounds into light's clip space
AABB croppingBounds = frustumSplitBounds.transformed(lightCamera->getViewProjection());
Vector3 cropMax = croppingBounds.getMax();
Vector3 cropMin = croppingBounds.getMin();
//cropMin.z = 0.0f;
// Calculate scale
Vector3 scale;
scale.x = 2.0f / (cropMax.x - cropMin.x);
scale.y = 2.0f / (cropMax.y - cropMin.y);
scale.z = 1.0f / (cropMax.z - cropMin.z);
// Quantize scale
//float scaleQuantizer = 64.0f;
//scale.x = 1.0f / std::ceil(1.0f / scale.x * scaleQuantizer) * scaleQuantizer;
//scale.y = 1.0f / std::ceil(1.0f / scale.y * scaleQuantizer) * scaleQuantizer;
// Calculate offset
Vector3 offset;
offset.x = (cropMax.x + cropMin.x) * scale.x * -0.5f;
offset.y = (cropMax.y + cropMin.y) * scale.y * -0.5f;
offset.z = -cropMin.z * scale.z;
// Quantize offset
//float halfTextureSize = static_cast<float>(croppedShadowMapResolution) * 0.5f;
//offset.x = std::ceil(offset.x * halfTextureSize) / halfTextureSize;
//offset.y = std::ceil(offset.y * halfTextureSize) / halfTextureSize;
cropMatrices[i] = glm::translate(offset) * glm::scale(scale);
}
Matrix4 croppedViewProjection = cropMatrices[i] * lightCamera->getViewProjection();
// Activate viewport for corresponding cropped shadow map
const Vector4& viewport = croppedShadowMapViewports[i];
glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
// Render operations
for (const RenderOperation& operation: *operations)
{
// Skip render operations with unsupported materials
if (operation.material->getMaterialFormatID() != static_cast<unsigned int>(MaterialFormat::PHYSICAL))
{
continue;
}
// Skip non shadow casters
const PhysicalMaterial* material = static_cast<const PhysicalMaterial*>(operation.material);
if (!material->shadowCaster)
{
continue;
}
// Select shader
Shader* targetShader = nullptr;
if (operation.pose != nullptr)
{
targetShader = skinnedShader;
}
else
{
targetShader = unskinnedShader;
}
// Switch shader if necessary
if (shader != targetShader)
{
shader = targetShader;
// Bind shader
shader->bind();
}
// Pass matrix palette
if (operation.pose != nullptr)
{
shader->setParameter(matrixPaletteParam, 0, operation.pose->getMatrixPalette(), operation.pose->getSkeleton()->getBoneCount());
}
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewProjectionMatrix = croppedViewProjection * modelMatrix;
shader->setParameter(modelViewProjectionParam, modelViewProjectionMatrix);
glBindVertexArray(operation.vao);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
delete[] splitDistances;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
ClippingRenderPass::ClippingRenderPass():
shader(nullptr)
{
clippingPlanesParam = parameterSet.addParameter("clippingPlanes", ShaderParameter::Type::VECTOR_4, 1);
modelParam = parameterSet.addParameter("modelMatrix", ShaderParameter::Type::MATRIX_4, 1);
modelViewProjectionParam = parameterSet.addParameter("modelViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
}
bool ClippingRenderPass::load(const RenderContext* renderContext)
{
shaderLoader.undefine();
shaderLoader.define("CLIPPING_PLANE_COUNT", 1);
shader = shaderLoader.load("data/shaders/clip.glsl", &parameterSet);
if (!shader)
{
return false;
}
return true;
}
void ClippingRenderPass::unload()
{
delete shader;
shader = nullptr;
}
void ClippingRenderPass::render(RenderContext* renderContext)
{
glEnable(GL_CLIP_DISTANCE0);
glEnable(GL_STENCIL_TEST);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
// Bind shader
shader->bind();
// Pass clipping planes to shader
shader->setParameter(clippingPlanesParam, clippingPlane);
// Grab render context parameters
const Camera& camera = *(renderContext->camera);
const std::list<RenderOperation>* operations = renderContext->queue->getOperations();
// Two passes
for (int i = 0; i < 2; ++i)
{
if (!i)
{
// Increment stencil for back faces
glStencilFunc(GL_ALWAYS, 0, 0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
glCullFace(GL_FRONT);
}
else
{
// Decrement stencil for front faces
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
glCullFace(GL_BACK);
}
for (const RenderOperation& operation: *operations)
{
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
shader->setParameter(modelParam, modelMatrix);
shader->setParameter(modelViewProjectionParam, modelViewProjectionMatrix);
glBindVertexArray(operation.vao);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LESS);
glDisable(GL_CLIP_DISTANCE0);
}
void ClippingRenderPass::setClippingPlane(const Plane& plane)
{
this->clippingPlane = Vector4(plane.getNormal(), plane.getDistance());
}
SoilRenderPass::SoilRenderPass():
shader(nullptr)
{
horizonTexturesParam = parameterSet.addParameter("horizonTextures", ShaderParameter::Type::INT, 4);
modelParam = parameterSet.addParameter("modelMatrix", ShaderParameter::Type::MATRIX_4, 1);
modelViewProjectionParam = parameterSet.addParameter("modelViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
horizonOTexture = nullptr;
horizonATexture = nullptr;
horizonBTexture = nullptr;
horizonCTexture = nullptr;
}
bool SoilRenderPass::load(const RenderContext* renderContext)
{
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
shaderLoader.define("VERTEX_TEXCOORD", EMERGENT_VERTEX_TEXCOORD);
shaderLoader.define("VERTEX_NORMAL", EMERGENT_VERTEX_NORMAL);
shader = shaderLoader.load("data/shaders/soil-profile.glsl", &parameterSet);
if (!shader)
{
return false;
}
return true;
}
void SoilRenderPass::unload()
{
shaderLoader.undefine();
delete shader;
shader = nullptr;
delete horizonOTexture;
delete horizonATexture;
delete horizonBTexture;
delete horizonCTexture;
horizonOTexture = nullptr;
horizonATexture = nullptr;
horizonBTexture = nullptr;
horizonCTexture = nullptr;
}
void SoilRenderPass::render(RenderContext* renderContext)
{
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Bind shader
shader->bind();
if (!horizonOTexture || !horizonATexture || !horizonBTexture || !horizonCTexture)
{
return;
}
// Bind textures
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, horizonOTexture->getTextureID());
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, horizonATexture->getTextureID());
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, horizonBTexture->getTextureID());
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, horizonCTexture->getTextureID());
// Pass texture units to shader
int textureUnits[] = {0, 1, 2, 3};
shader->setParameter(horizonTexturesParam, 0, &textureUnits[0], 4);
// Enable depth testing
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LEQUAL);
// Enable backface culling
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
const Camera& camera = *(renderContext->camera);
const std::list<RenderOperation>* operations = renderContext->queue->getOperations();
// Render operations
for (const RenderOperation& operation: *operations)
{
// Skip render operations with unsupported materials
if (operation.material->getMaterialFormatID() != static_cast<unsigned int>(MaterialFormat::PHYSICAL))
{
continue;
}
const PhysicalMaterial* material = static_cast<const PhysicalMaterial*>(operation.material);
if (!(material->flags & (unsigned int)PhysicalMaterial::Flags::SOIL))
{
continue;
}
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
shader->setParameter(modelParam, modelMatrix);
shader->setParameter(modelViewProjectionParam, modelViewProjectionMatrix);
glBindVertexArray(operation.vao);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
LightingRenderPass::LightingRenderPass():
shadowMap(0),
shadowCamera(nullptr),
treeShadow(nullptr),
diffuseCubemap(nullptr),
specularCubemap(nullptr),
shadowMapPass(nullptr)
{
// Initialize bias matrix for calculating the model-view-projection-bias matrix (used for shadow map texture coordinate calculation)
biasMatrix = glm::translate(Vector3(0.5f)) * glm::scale(Vector3(0.5f));
maxBoneCount = 64;
matrixPaletteParam = parameterSet.addParameter("matrixPalette", ShaderParameter::Type::MATRIX_4, maxBoneCount);
modelParam = parameterSet.addParameter("modelMatrix", ShaderParameter::Type::MATRIX_4, 1);
modelViewParam = parameterSet.addParameter("modelViewMatrix", ShaderParameter::Type::MATRIX_4, 1);
modelViewProjectionParam = parameterSet.addParameter("modelViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
normalModelViewParam = parameterSet.addParameter("normalModelViewMatrix", ShaderParameter::Type::MATRIX_3, 1);
normalModelParam = parameterSet.addParameter("normalModelMatrix", ShaderParameter::Type::MATRIX_3, 1);
lightViewProjectionParam = parameterSet.addParameter("lightViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
shadowMapParam = parameterSet.addParameter("shadowMap", ShaderParameter::Type::INT, 1);
cameraPositionParam = parameterSet.addParameter("cameraPosition", ShaderParameter::Type::VECTOR_3, 1);
directionalLightCountParam = parameterSet.addParameter("directionalLightCount", ShaderParameter::Type::INT, 1);
directionalLightColorsParam = parameterSet.addParameter("directionalLightColors", ShaderParameter::Type::VECTOR_3, 1);
directionalLightDirectionsParam = parameterSet.addParameter("directionalLightDirections", ShaderParameter::Type::VECTOR_3, 1);
albedoOpacityMapParam = parameterSet.addParameter("albedoOpacityMap", ShaderParameter::Type::INT, 1);
metalnessRoughnessMapParam = parameterSet.addParameter("metalnessRoughnessMap", ShaderParameter::Type::INT, 1);
normalOcclusionMapParam = parameterSet.addParameter("normalOcclusionMap", ShaderParameter::Type::INT, 1);
diffuseCubemapParam = parameterSet.addParameter("diffuseCubemap", ShaderParameter::Type::INT, 1);
specularCubemapParam = parameterSet.addParameter("specularCubemap", ShaderParameter::Type::INT, 1);
}
bool LightingRenderPass::load(const RenderContext* renderContext)
{
// Load tree shadow
TextureLoader textureLoader;
treeShadow = textureLoader.load("data/textures/tree-shadow-0.png");
if (!treeShadow)
{
std::cerr << "Failed to load tree shadow" << std::endl;
}
// Load unskinned shader
shaderLoader.undefine();
shaderLoader.define("TEXTURE_COUNT", 0);
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
shaderLoader.define("VERTEX_NORMAL", EMERGENT_VERTEX_NORMAL);
shaderLoader.define("VERTEX_TEXCOORD", EMERGENT_VERTEX_TEXCOORD);
unskinnedShader = shaderLoader.load("data/shaders/lit-object.glsl", &parameterSet);
// Load skinned shader
shaderLoader.define("SKINNED");
shaderLoader.define("MAX_BONE_COUNT", maxBoneCount);
shaderLoader.define("VERTEX_BONE_INDICES", EMERGENT_VERTEX_BONE_INDICES);
shaderLoader.define("VERTEX_BONE_WEIGHTS", EMERGENT_VERTEX_BONE_WEIGHTS);
skinnedShader = shaderLoader.load("data/shaders/lit-object.glsl", &parameterSet);
if (!unskinnedShader || !skinnedShader)
{
return false;
}
time = 0.0f;
return true;
}
void LightingRenderPass::unload()
{
delete unskinnedShader;
delete skinnedShader;
unskinnedShader = nullptr;
skinnedShader = nullptr;
for (auto it = shaderCache.begin(); it != shaderCache.end(); ++it)
{
delete it->second;
}
shaderCache.clear();
delete treeShadow;
treeShadow = nullptr;
delete diffuseCubemap;
diffuseCubemap = nullptr;
delete specularCubemap;
specularCubemap = nullptr;
}
void LightingRenderPass::render(RenderContext* renderContext)
{
/*
time += 1.0f / 60.f;
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Clear the framebuffer depth
//glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
//glClearDepth(1.0);
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Enable clipping
if (renderContext->layer->getIndex() == 0)
{
// Clipping pass
cappingRenderContext.camera = renderContext->camera;
cappingRenderContext.layer = renderContext->layer;
for (int i = 0; i < 5; ++i)
{
clippingRenderPass.setClippingPlane(clippingPlanes[i]);
clippingRenderPass.render(renderContext);
Transform transform = Transform::getIdentity();
transform.translation = clippingPlanes[i].getNormal() * -clippingPlanes[i].getDistance();
transform.scale = Vector3(150.0f);
transform.rotation = glm::normalize(glm::rotation(Vector3(0, 0, -1), clippingPlanes[i].getNormal()));
ModelInstance* cappingPlaneInstance = &cappingPlaneInstances[i];
cappingPlaneInstance->setTransform(transform);
cappingRenderQueue.clear();
cappingRenderQueue.queue(cappingPlaneInstance);
cappingRenderPass.render(&cappingRenderContext);
}
glEnable(GL_CLIP_DISTANCE0);
}
else
{
glDisable(GL_CLIP_DISTANCE0);
}
// Enable depth testing
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LEQUAL);
// Enable backface culling
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// Enable alpha blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
const Camera& camera = *(renderContext->camera);
const std::list<RenderOperation>* operations = renderContext->queue->getOperations();
// Calculate camera direction
const Vector3& cameraDirection = camera.getForward();
// Textures
const std::size_t maxTextures = 8;
int materialTexture[maxTextures];
Vector2 texcoordOffset[maxTextures];
Vector2 texcoordScale[maxTextures];
float textureDiffuseInfluence[maxTextures];
float textureSpecularInfluence[maxTextures];
float textureEmissiveInfluence[maxTextures];
float textureRoughnessInfluence[maxTextures];
float textureOpacityInfluence[maxTextures];
float textureNormalInfluence[maxTextures];
for (std::size_t i = 0; i < maxTextures; ++i)
{
materialTexture[i] = i + 2;
}
// Lights
// Point lights
const std::size_t maxPointLightCount = 4;
std::size_t pointLightCount = 0;
Vector3 pointLightColor[maxPointLightCount];
Vector3 pointLightPosition[maxPointLightCount];
Vector3 pointLightAttenuation[maxPointLightCount];
for (std::size_t i = 0; i < maxPointLightCount; ++i)
pointLightColor[i] = Vector3(0.0f);
// Directional lights
const std::size_t maxDirectionalLightCount = 4;
std::size_t directionalLightCount = 0;
Vector3 directionalLightColor[maxDirectionalLightCount];
Vector3 directionalLightDirection[maxDirectionalLightCount];
for (std::size_t i = 0; i < maxDirectionalLightCount; ++i)
directionalLightColor[i] = Vector3(0.0f);
// Spotlights
const std::size_t maxSpotlightCount = 4;
std::size_t spotlightCount = 0;
Vector3 spotlightColor[maxSpotlightCount];
Vector3 spotlightPosition[maxSpotlightCount];
Vector3 spotlightAttenuation[maxSpotlightCount];
Vector3 spotlightDirection[maxSpotlightCount];
float spotlightCutoff[maxSpotlightCount];
float spotlightExponent[maxSpotlightCount];
for (std::size_t i = 0; i < maxSpotlightCount; ++i)
spotlightColor[i] = Vector3(0.0f);
const std::list<SceneObject*>* lights = renderContext->layer->getObjects(SceneObjectType::LIGHT);
if (lights != nullptr)
{
for (auto object: *lights)
{
const Light* light = static_cast<const Light*>(object);
LightType lightType = light->getLightType();
if (lightType == LightType::POINT)
{
const PointLight* pointLight = static_cast<const PointLight*>(light);
pointLightColor[pointLightCount] = pointLight->getScaledColor();
pointLightPosition[pointLightCount] = Vector3(camera.getView() * Vector4(pointLight->getTranslation(), 1.0f));
pointLightAttenuation[pointLightCount] = pointLight->getAttenuation();
++pointLightCount;
}
else if (lightType == LightType::DIRECTIONAL)
{
const DirectionalLight* directionalLight = static_cast<const DirectionalLight*>(light);
directionalLightColor[directionalLightCount] = directionalLight->getScaledColor();
directionalLightDirection[directionalLightCount] = glm::normalize(Vector3(camera.getView() * Vector4(-directionalLight->getDirection(), 0.0f)));
++directionalLightCount;
}
else if (lightType == LightType::SPOTLIGHT)
{
const Spotlight* spotlight = static_cast<const Spotlight*>(light);
spotlightColor[spotlightCount] = spotlight->getScaledColor();
spotlightPosition[spotlightCount] = Vector3(camera.getView() * Vector4(spotlight->getTranslation(), 1.0f));
spotlightAttenuation[spotlightCount] = spotlight->getAttenuation();
spotlightDirection[spotlightCount] = glm::normalize(Vector3(camera.getView() * Vector4(-spotlight->getDirection(), 0.0f)));
spotlightCutoff[spotlightCount] = spotlight->getCutoff();
spotlightExponent[spotlightCount] = spotlight->getExponent();
++spotlightCount;
}
}
}
// Calculate the (light-space) view-projection-bias matrix
Matrix4 viewProjectionBiasMatrix = biasMatrix * shadowCamera->getViewProjection();
// Bind shader
Shader* boundShader = nullptr;
// Bind shadow map
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, shadowMap);
// Bind tree shadow
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, treeShadow.getTextureID());
// For each clipping plane
for (int clippingPlaneIndex = 0; clippingPlaneIndex < 5; ++clippingPlaneIndex)
{
// Render operations
for (const RenderOperation& operation: *operations)
{
const Material* material = operation.material;
// Find shader
std::size_t hashValue = material->getHashValue();
auto it = shaderCache.find(hashValue);
if (it == shaderCache.end())
{
std::cerr << "Warning: material requires unloaded shader" << std::endl;
continue;
}
// Bind shader
Shader* shader = it->second;
if (shader != boundShader)
{
shader->bind();
boundShader = shader;
}
// Get shader parameters
ShaderParameterSet* parameters = shader->getParameters();
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewMatrix = camera.getView() * modelMatrix;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
// Pass matrix parameters
if (parameters->hasParameter(ShaderParameter::MODEL_MATRIX))
{
parameters->setValue(ShaderParameter::MODEL_MATRIX, modelMatrix);
}
if (parameters->hasParameter(ShaderParameter::MODEL_VIEW_MATRIX))
{
parameters->setValue(ShaderParameter::MODEL_VIEW_MATRIX, modelViewMatrix);
}
if (parameters->hasParameter(ShaderParameter::MODEL_VIEW_PROJECTION_MATRIX))
{
parameters->setValue(ShaderParameter::MODEL_VIEW_PROJECTION_MATRIX, modelViewProjectionMatrix);
}
if (parameters->hasParameter(ShaderParameter::NORMAL_MODEL_MATRIX))
{
Matrix3 normalModelMatrix = glm::transpose(glm::inverse(Matrix3(modelMatrix)));
parameters->setValue(ShaderParameter::NORMAL_MODEL_MATRIX, normalModelMatrix);
}
if (parameters->hasParameter(ShaderParameter::NORMAL_MODEL_VIEW_MATRIX))
{
Matrix3 normalModelViewMatrix = glm::transpose(glm::inverse(Matrix3(modelViewMatrix)));
parameters->setValue(ShaderParameter::NORMAL_MODEL_VIEW_MATRIX, normalModelViewMatrix);
}
if (parameters->hasParameter(ShaderParameter::CAMERA_DIRECTION))
{
parameters->setValue(ShaderParameter::CAMERA_DIRECTION, cameraDirection);
}
// Pass material parameters
if (parameters->hasParameter(ShaderParameter::MATERIAL_DIFFUSE_COLOR))
{
parameters->setValue(ShaderParameter::MATERIAL_DIFFUSE_COLOR, material->getDiffuseColor());
}
if (parameters->hasParameter(ShaderParameter::MATERIAL_SPECULAR_COLOR))
{
parameters->setValue(ShaderParameter::MATERIAL_SPECULAR_COLOR, material->getSpecularColor());
}
if (parameters->hasParameter(ShaderParameter::MATERIAL_EMISSIVE_COLOR))
{
parameters->setValue(ShaderParameter::MATERIAL_EMISSIVE_COLOR, material->getEmissiveColor());
}
if (parameters->hasParameter(ShaderParameter::MATERIAL_ROUGHNESS))
{
parameters->setValue(ShaderParameter::MATERIAL_ROUGHNESS, material->getRoughness());
}
if (parameters->hasParameter(ShaderParameter::MATERIAL_OPACITY))
{
parameters->setValue(ShaderParameter::MATERIAL_OPACITY, material->getOpacity());
}
// Pass texture parameters
if (parameters->hasParameter(ShaderParameter::MATERIAL_TEXTURE))
{
std::size_t textureCount = material->getTextureCount();
for (std::size_t i = 0; i < textureCount; ++i)
{
const Texture* texture = material->getTexture(i);
texcoordOffset[i] = Vector2(texture->getCoordinateOffset());
texcoordScale[i] = Vector2(texture->getCoordinateScale());
textureDiffuseInfluence[i] = texture->getDiffuseInfluence();
textureSpecularInfluence[i] = texture->getSpecularInfluence();
textureEmissiveInfluence[i] = texture->getEmissiveInfluence();
textureRoughnessInfluence[i] = texture->getRoughnessInfluence();
textureOpacityInfluence[i] = texture->getOpacityInfluence();
textureNormalInfluence[i] = texture->getNormalInfluence();
// Bind texture
glActiveTexture(GL_TEXTURE2 + i);
glBindTexture(GL_TEXTURE_2D, texture->getTextureID());
}
parameters->setValue(ShaderParameter::MATERIAL_TEXTURE, 0, &materialTexture[0], textureCount);
if (parameters->hasParameter(ShaderParameter::TEXCOORD_OFFSET))
parameters->setValue(ShaderParameter::TEXCOORD_OFFSET, 0, &texcoordOffset[0], textureCount);
if (parameters->hasParameter(ShaderParameter::TEXCOORD_SCALE))
parameters->setValue(ShaderParameter::TEXCOORD_SCALE, 0, &texcoordScale[0], textureCount);
if (parameters->hasParameter(ShaderParameter::TEXTURE_DIFFUSE_INFLUENCE))
parameters->setValue(ShaderParameter::TEXTURE_DIFFUSE_INFLUENCE, 0, &textureDiffuseInfluence[0], textureCount);
if (parameters->hasParameter(ShaderParameter::TEXTURE_SPECULAR_INFLUENCE))
parameters->setValue(ShaderParameter::TEXTURE_SPECULAR_INFLUENCE, 0, &textureSpecularInfluence[0], textureCount);
if (parameters->hasParameter(ShaderParameter::TEXTURE_EMISSIVE_INFLUENCE))
parameters->setValue(ShaderParameter::TEXTURE_EMISSIVE_INFLUENCE, 0, &textureEmissiveInfluence[0], textureCount);
if (parameters->hasParameter(ShaderParameter::TEXTURE_ROUGHNESS_INFLUENCE))
parameters->setValue(ShaderParameter::TEXTURE_ROUGHNESS_INFLUENCE, 0, &textureRoughnessInfluence[0], textureCount);
if (parameters->hasParameter(ShaderParameter::TEXTURE_OPACITY_INFLUENCE))
parameters->setValue(ShaderParameter::TEXTURE_OPACITY_INFLUENCE, 0, &textureOpacityInfluence[0], textureCount);
if (parameters->hasParameter(ShaderParameter::TEXTURE_NORMAL_INFLUENCE))
parameters->setValue(ShaderParameter::TEXTURE_NORMAL_INFLUENCE, 0, &textureNormalInfluence[0], textureCount);
}
// Pass lighting parameters
if (parameters->hasParameter(ShaderParameter::POINT_LIGHT_COLOR))
{
parameters->setValue(ShaderParameter::POINT_LIGHT_COLOR, 0, &pointLightColor[0], spotlightCount);
parameters->setValue(ShaderParameter::POINT_LIGHT_POSITION, 0, &pointLightPosition[0], spotlightCount);
parameters->setValue(ShaderParameter::POINT_LIGHT_ATTENUATION, 0, &pointLightAttenuation[0], spotlightCount);
}
if (parameters->hasParameter(ShaderParameter::DIRECTIONAL_LIGHT_COLOR))
{
parameters->setValue(ShaderParameter::DIRECTIONAL_LIGHT_COLOR, 0, &directionalLightColor[0], directionalLightCount);
parameters->setValue(ShaderParameter::DIRECTIONAL_LIGHT_DIRECTION, 0, &directionalLightDirection[0], directionalLightCount);
}
if (parameters->hasParameter(ShaderParameter::SPOTLIGHT_COLOR))
{
parameters->setValue(ShaderParameter::SPOTLIGHT_COLOR, 0, &spotlightColor[0], spotlightCount);
parameters->setValue(ShaderParameter::SPOTLIGHT_POSITION, 0, &spotlightPosition[0], spotlightCount);
parameters->setValue(ShaderParameter::SPOTLIGHT_ATTENUATION, 0, &spotlightAttenuation[0], spotlightCount);
parameters->setValue(ShaderParameter::SPOTLIGHT_DIRECTION, 0, &spotlightDirection[0], spotlightCount);
parameters->setValue(ShaderParameter::SPOTLIGHT_CUTOFF, 0, &spotlightCutoff[0], spotlightCount);
parameters->setValue(ShaderParameter::SPOTLIGHT_EXPONENT, 0, &spotlightExponent[0], spotlightCount);
}
if (parameters->hasParameter(ShaderParameter::DIFFUSE_ENVIRONMENT_MAP))
{
parameters->setValue(ShaderParameter::DIFFUSE_ENVIRONMENT_MAP, 1);
}
if (parameters->hasParameter(ShaderParameter::SPECULAR_ENVIRONMENT_MAP))
{
parameters->setValue(ShaderParameter::SPECULAR_ENVIRONMENT_MAP, 2);
}
// Pass shadow parameters
if (parameters->hasParameter(ShaderParameter::MODEL_VIEW_PROJECTION_BIAS_MATRIX))
{
Matrix4 modelViewProjectionBiasMatrix = viewProjectionBiasMatrix * modelMatrix;
parameters->setValue(ShaderParameter::MODEL_VIEW_PROJECTION_BIAS_MATRIX, modelViewProjectionBiasMatrix);
}
if (parameters->hasParameter(ShaderParameter::SHADOW_MAP))
{
parameters->setValue(ShaderParameter::SHADOW_MAP, 0);
}
if (parameters->hasParameter(ShaderParameter::TREE_SHADOW))
{
parameters->setValue(ShaderParameter::TREE_SHADOW, 1);
}
if (parameters->hasParameter(ShaderParameter::TIME))
{
parameters->setValue(ShaderParameter::TIME, time);
}
// Pass clipping parameters
if (parameters->hasParameter(ShaderParameter::CLIPPING_PLANES))
{
const Plane& clippingPlane = clippingPlanes[clippingPlaneIndex];
parameters->setValue(ShaderParameter::CLIPPING_PLANES, Vector4(clippingPlane.getNormal(), clippingPlane.getDistance()));
}
// Draw geometry
glBindVertexArray(operation.vao);
if (!material->isOpaque())
{
//glBlendFunc(GL_ZERO, GL_SRC_COLOR);
//glBlendFunc(GL_ONE, GL_ONE);
//glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//glBlendFunc(GL_ZERO, GL_SRC_COLOR);
//glDepthMask(GL_FALSE);
glFrontFace(GL_CW);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
parameters->setValue(ShaderParameter::MATERIAL_DIFFUSE_COLOR, material->getDiffuseColor() * 0.05f);
glFrontFace(GL_CCW);
//glDepthMask(GL_TRUE);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
//glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else
{
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
}
// Disable clipping
glDisable(GL_CLIP_DISTANCE0);
*/
const Camera& camera = *(renderContext->camera);
std::list<RenderOperation>* operations = renderContext->queue->getOperations();
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Enable depth testing
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LEQUAL);
// Enable backface culling
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// Enable alpha blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
int directionalLightCount = 1;
Vector3 directionalLightColors[3];
Vector3 directionalLightDirections[3];
directionalLightColors[0] = Vector3(1);
directionalLightDirections[0] = glm::normalize(Vector3(camera.getView() * -Vector4(0, -2, -1, 0)));
// Calculate the (light-space) view-projection matrix
Matrix4 lightViewProjectionMatrix = shadowMapPass->getTileMatrix(0) * biasMatrix * shadowMapPass->getCropMatrix(0) * shadowCamera->getViewProjection();
//Matrix4 lightViewProjectionMatrix = biasMatrix * shadowCamera->getViewProjection();
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_CUBE_MAP, diffuseCubemap->getTextureID());
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_CUBE_MAP, specularCubemap->getTextureID());
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, shadowMap);
Shader* shader = nullptr;
Texture* albedoOpacityMap = nullptr;
Texture* metalnessRoughnessMap = nullptr;
Texture* normalOcclusionMap = nullptr;
// Sort operations
operations->sort(RenderOpCompare());
// Render operations
for (const RenderOperation& operation: *operations)
{
// Skip render operations with unsupported materials
if (operation.material->getMaterialFormatID() != static_cast<unsigned int>(MaterialFormat::PHYSICAL))
{
continue;
}
const PhysicalMaterial* material = static_cast<const PhysicalMaterial*>(operation.material);
if (!(material->flags & (unsigned int)PhysicalMaterial::Flags::OBJECT))
{
continue;
}
// Skip render operations with unsupported vertex formats
// Select shader
Shader* targetShader = nullptr;
if (operation.pose != nullptr)
{
targetShader = skinnedShader;
}
else
{
targetShader = unskinnedShader;
}
// Switch shader if necessary
if (shader != targetShader)
{
shader = targetShader;
// Bind shader
shader->bind();
// Pass static params
shader->setParameter(lightViewProjectionParam, lightViewProjectionMatrix);
shader->setParameter(albedoOpacityMapParam, 0);
shader->setParameter(metalnessRoughnessMapParam, 1);
shader->setParameter(normalOcclusionMapParam, 2);
shader->setParameter(diffuseCubemapParam, 3);
shader->setParameter(specularCubemapParam, 4);
shader->setParameter(shadowMapParam, 5);
shader->setParameter(directionalLightCountParam, directionalLightCount);
shader->setParameter(directionalLightColorsParam, 0, &directionalLightColors[0], directionalLightCount);
shader->setParameter(directionalLightDirectionsParam, 0, &directionalLightDirections[0], directionalLightCount);
shader->setParameter(cameraPositionParam, camera.getTranslation());
}
// Pass matrix palette
if (operation.pose != nullptr)
{
shader->setParameter(matrixPaletteParam, 0, operation.pose->getMatrixPalette(), operation.pose->getSkeleton()->getBoneCount());
}
// Bind albedo-opacity map
if (material->albedoOpacityMap != albedoOpacityMap)
{
albedoOpacityMap = material->albedoOpacityMap;
if (albedoOpacityMap != nullptr)
{
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, albedoOpacityMap->getTextureID());
}
}
// Bind metalness-roughness map
if (material->metalnessRoughnessMap != metalnessRoughnessMap)
{
metalnessRoughnessMap = material->metalnessRoughnessMap;
if (metalnessRoughnessMap != nullptr)
{
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, metalnessRoughnessMap->getTextureID());
}
}
// Bind normal-occlusion map
if (material->normalOcclusionMap != normalOcclusionMap)
{
normalOcclusionMap = material->normalOcclusionMap;
if (normalOcclusionMap != nullptr)
{
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, normalOcclusionMap->getTextureID());
}
}
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewMatrix = camera.getView() * modelMatrix;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
Matrix3 normalModelViewMatrix = glm::transpose(glm::inverse(Matrix3(modelViewMatrix)));
Matrix3 normalModelMatrix = glm::transpose(glm::inverse(Matrix3(modelMatrix)));
shader->setParameter(modelParam, modelMatrix);
shader->setParameter(modelViewParam, modelViewMatrix);
shader->setParameter(modelViewProjectionParam, modelViewProjectionMatrix);
shader->setParameter(normalModelViewParam, normalModelViewMatrix);
shader->setParameter(normalModelParam, normalModelMatrix);
glBindVertexArray(operation.vao);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, 0);
}
bool LightingRenderPass::loadShader(const RenderOperation& operation)
{
/*
const std::string shaderFilename = "data/shaders/main.glsl";
// Get material and its hash value
const Material* material = operation.material;
std::size_t hashValue = material->getHashValue();
// Check if shader has already been loaded
auto it = shaderCache.find(hashValue);
if (it != shaderCache.end())
return true;
// Define shader preprocessor macros
// Undefine previous definitions
shaderLoader.undefine();
// Clipping
shaderLoader.define("CLIPPING_PLANE_COUNT", 1);
// Vertex format
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
shaderLoader.define("VERTEX_NORMAL", EMERGENT_VERTEX_NORMAL);
//shaderLoader.define("VERTEX_COLOR", EMERGENT_VERTEX_COLOR);
// Lighting
// Material
if (material->isShadeless())
{
shaderLoader.define("SHADELESS");
}
else
{
// Lighting
//shaderLoader.define("POINT_LIGHT_COUNT", 1);
shaderLoader.define("DIRECTIONAL_LIGHT_COUNT", 2);
//shaderLoader.define("SPOTLIGHT_COUNT", 2);
//shaderLoader.define("ENVIRONMENT_MAP");
}
if (material->isShadowReceiver())
shaderLoader.define("SHADOWED");
// Final
shaderLoader.define("GAMMA_CORRECT");
// Load shader
Shader* shader = shaderLoader.load(shaderFilename);
if (!shader)
{
std::cerr << "Failed to load shader \"" << shaderFilename << "\"" << std::endl;
return false;
}
// Store shader in cache
shaderCache[hashValue] = shader;
return true;
*/
return false;
}
bool LightingRenderPass::RenderOpCompare::operator()(const RenderOperation& opA, const RenderOperation& opB) const
{
// Skip render operations with unsupported materials
if (opA.material->getMaterialFormatID() != static_cast<unsigned int>(MaterialFormat::PHYSICAL))
{
return false;
}
else if (opB.material->getMaterialFormatID() != static_cast<unsigned int>(MaterialFormat::PHYSICAL))
{
return true;
}
// Cast materials
const PhysicalMaterial* materialA = static_cast<const PhysicalMaterial*>(opA.material);
const PhysicalMaterial* materialB = static_cast<const PhysicalMaterial*>(opB.material);
// Determine transparency
bool transparentA = materialA->flags & (unsigned int)PhysicalMaterial::Flags::TRANSLUCENT;
bool transparentB = materialB->flags & (unsigned int)PhysicalMaterial::Flags::TRANSLUCENT;
if (transparentA)
{
if (transparentB)
{
// A and B are both transparent, sort by depth
return (opA.depth <= opB.depth);
}
else
{
// A is transparent, B is opaque. Render B first
return false;
}
}
else
{
if (transparentB)
{
// A is opaque, B is transparent. Render A first
return true;
}
else
{
// A and B are both opaque, sort by material
return (opA.material < opB.material);
}
}
}
DebugRenderPass::DebugRenderPass()
{
modelViewProjectionParam = parameterSet.addParameter("modelViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
}
bool DebugRenderPass::load(const RenderContext* renderContext)
{
unlitSolidShader = shaderLoader.load("data/shaders/unlit-solid.glsl", &parameterSet);
if (!unlitSolidShader)
{
return false;
}
const float aabbVertexData[] =
{
-0.5, -0.5, -0.5,
0.5, -0.5, -0.5,
0.5, 0.5, -0.5,
-0.5, 0.5, -0.5,
-0.5, -0.5, 0.5,
0.5, -0.5, 0.5,
0.5, 0.5, 0.5,
-0.5, 0.5, 0.5,
};
const std::uint32_t aabbIndexData[] =
{
0, 1, 1, 2, 2, 3, 3, 0,
4, 5, 5, 6, 6, 7, 7, 4,
0, 4, 1, 5, 2, 6, 3, 7
};
aabbVertexCount = 8;
aabbIndexCount = 24;
// Create AABB geometry
glGenVertexArrays(1, &aabbVAO);
glBindVertexArray(aabbVAO);
glGenBuffers(1, &aabbVBO);
glBindBuffer(GL_ARRAY_BUFFER, aabbVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * aabbVertexCount, aabbVertexData, GL_STATIC_DRAW);
glEnableVertexAttribArray(EMERGENT_VERTEX_POSITION);
glVertexAttribPointer(EMERGENT_VERTEX_POSITION, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (char*)0 + 0*sizeof(float));
glGenBuffers(1, &aabbIBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, aabbIBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(std::uint32_t) * aabbIndexCount, aabbIndexData, GL_STATIC_DRAW);
return true;
}
void DebugRenderPass::unload()
{
delete unlitSolidShader;
unlitSolidShader = nullptr;
glDeleteBuffers(1, &aabbIBO);
glDeleteBuffers(1, &aabbVBO);
glDeleteVertexArrays(1, &aabbVAO);
}
void DebugRenderPass::render(RenderContext* renderContext)
{
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
const Camera& camera = *(renderContext->camera);
/*
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Clear the framebuffer depth
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Disable depth testing
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LESS);
*/
// Disable backface culling
glDisable(GL_CULL_FACE);
// Disable alpha blending
glDisable(GL_BLEND);
// Bind unlit solid shader
unlitSolidShader->bind();
// Bind AABB geometry
glBindVertexArray(aabbVAO);
const std::list<SceneObject*>* objects = renderContext->layer->getObjects();
for (auto object: *objects)
{
if (!camera.getCullingMask()->intersects(object->getBounds()))
continue;
const AABB& bounds = object->getBounds();
const Vector3& min = bounds.getMin();
const Vector3& max = bounds.getMax();
Vector3 scale = max - min;
Vector3 center = (min + max) * 0.5f;
const Vector3& translation = center;
Matrix4 modelMatrix = glm::translate(translation) * glm::scale(scale);
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
unlitSolidShader->setParameter(modelViewProjectionParam, modelViewProjectionMatrix);
glDrawElements(GL_LINES, aabbIndexCount, GL_UNSIGNED_INT, (void*)0);
}
}
UIRenderPass::UIRenderPass()
{
modelViewProjectionParam = parameterSet.addParameter("modelViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
textureParam = parameterSet.addParameter("tex", ShaderParameter::Type::INT, 1);
texcoordOffsetParam = parameterSet.addParameter("texcoordOffset", ShaderParameter::Type::VECTOR_2, 1);
texcoordScaleParam = parameterSet.addParameter("texcoordScale", ShaderParameter::Type::VECTOR_2, 1);
}
bool UIRenderPass::load(const RenderContext* renderContext)
{
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
shaderLoader.define("VERTEX_TEXCOORD", EMERGENT_VERTEX_TEXCOORD);
shaderLoader.define("VERTEX_COLOR", EMERGENT_VERTEX_COLOR);
shaderLoader.define("GAMMA_CORRECT");
shaderLoader.define("TEXTURE_COUNT", 1);
texturedUIShader = shaderLoader.load("data/shaders/ui.glsl", &parameterSet);
shaderLoader.undefine();
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
shaderLoader.define("VERTEX_COLOR", EMERGENT_VERTEX_COLOR);
shaderLoader.define("GAMMA_CORRECT");
untexturedUIShader = shaderLoader.load("data/shaders/ui.glsl", &parameterSet);
if (!texturedUIShader || !untexturedUIShader)
{
return false;
}
return true;
}
void UIRenderPass::unload()
{
delete texturedUIShader;
delete untexturedUIShader;
texturedUIShader = nullptr;
untexturedUIShader = nullptr;
}
void UIRenderPass::render(RenderContext* renderContext)
{
const Camera& camera = *(renderContext->camera);
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Disable depth testing
glDisable(GL_DEPTH_TEST);
//glDepthMask(GL_FALSE);
//glDepthFunc(GL_LESS);
// Disable backface culling
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// Enable alpha blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glActiveTexture(GL_TEXTURE0);
Shader* shader = nullptr;
// Render operations
const std::list<RenderOperation>* operations = renderContext->queue->getOperations();
for (const RenderOperation& operation: *operations)
{
// Skip render operations with unsupported materials
if (operation.material->getMaterialFormatID() != static_cast<unsigned int>(MaterialFormat::UI))
{
continue;
}
const UIMaterial* material = static_cast<const UIMaterial*>(operation.material);
if (material->texture != nullptr)
{
shader = texturedUIShader;
shader->bind();
shader->setParameter(textureParam, 0);
shader->setParameter(texcoordOffsetParam, Vector2(0.0f));
shader->setParameter(texcoordScaleParam, Vector2(1.0f));
glBindTexture(GL_TEXTURE_2D, material->texture->getTextureID());
}
else
{
shader = untexturedUIShader;
shader->bind();
}
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
// Pass matrix parameters
shader->setParameter(modelViewProjectionParam, modelViewProjectionMatrix);
// Draw geometry
glBindVertexArray(operation.vao);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
VignetteRenderPass::VignetteRenderPass():
shader(nullptr)
{
bayerTextureParam = parameterSet.addParameter("bayerTexture", ShaderParameter::Type::INT, 1);
modelViewProjectionParam = parameterSet.addParameter("modelViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
}
bool VignetteRenderPass::load(const RenderContext* renderContext)
{
shaderLoader.undefine();
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
shaderLoader.define("VERTEX_COLOR", EMERGENT_VERTEX_COLOR);
shaderLoader.define("TEXTURE_COUNT", 1);
shader = shaderLoader.load("data/shaders/vignette.glsl", &parameterSet);
if (!shader)
{
return false;
}
/// @see http://www.anisopteragames.com/how-to-fix-color-banding-with-dithering/
static const char pattern[] =
{
0, 32, 8, 40, 2, 34, 10, 42,
48, 16, 56, 24, 50, 18, 58, 26,
12, 44, 4, 36, 14, 46, 6, 38,
60, 28, 52, 20, 62, 30, 54, 22,
3, 35, 11, 43, 1, 33, 9, 41,
51, 19, 59, 27, 49, 17, 57, 25,
15, 47, 7, 39, 13, 45, 5, 37,
63, 31, 55, 23, 61, 29, 53, 21
};
glGenTextures(1, &bayerTextureID);
glBindTexture(GL_TEXTURE_2D, bayerTextureID);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, 8, 8, 0, GL_RED, GL_UNSIGNED_BYTE, pattern);
return true;
}
void VignetteRenderPass::unload()
{
delete shader;
shader = nullptr;
glDeleteTextures(1, &bayerTextureID);
}
void VignetteRenderPass::render(RenderContext* renderContext)
{
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
// Bind shader
shader->bind();
// Bind texture
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, bayerTextureID);
// Pass texture unit to shader
shader->setParameter(bayerTextureParam, 0);
const Camera& camera = *(renderContext->camera);
const std::list<RenderOperation>* operations = renderContext->queue->getOperations();
// Render operations
for (const RenderOperation& operation: *operations)
{
const Material* material = operation.material;
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
shader->setParameter(modelViewProjectionParam, modelViewProjectionMatrix);
glBindVertexArray(operation.vao);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
SkyboxRenderPass::SkyboxRenderPass():
shader(nullptr),
cubemap(nullptr)
{
matrixParam = parameterSet.addParameter("matrix", ShaderParameter::Type::MATRIX_4, 1);
cubemapParam = parameterSet.addParameter("cubemap", ShaderParameter::Type::INT, 1);
}
bool SkyboxRenderPass::load(const RenderContext* renderContext)
{
shaderLoader.undefine();
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
shader = shaderLoader.load("data/shaders/skybox.glsl", &parameterSet);
if (!shader)
{
return false;
}
const float quadVertexData[] =
{
-1.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f
};
const std::uint32_t quadIndexData[] =
{
0, 1, 3,
3, 1, 2
};
quadVertexCount = 4;
quadIndexCount = 6;
// Create AABB geometry
glGenVertexArrays(1, &quadVAO);
glBindVertexArray(quadVAO);
glGenBuffers(1, &quadVBO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * quadVertexCount, quadVertexData, GL_STATIC_DRAW);
glEnableVertexAttribArray(EMERGENT_VERTEX_POSITION);
glVertexAttribPointer(EMERGENT_VERTEX_POSITION, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (char*)0 + 0*sizeof(float));
glGenBuffers(1, &quadIBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quadIBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(std::uint32_t) * quadIndexCount, quadIndexData, GL_STATIC_DRAW);
return true;
}
void SkyboxRenderPass::unload()
{
delete shader;
shader = nullptr;
glDeleteBuffers(1, &quadIBO);
glDeleteBuffers(1, &quadVBO);
glDeleteVertexArrays(1, &quadVAO);
}
void SkyboxRenderPass::render(RenderContext* renderContext)
{
if (!cubemap)
{
return;
}
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
//glDisable(GL_CULL_FACE);
//glCullFace(GL_BACK);
// Bind shader
shader->bind();
// Bind cubemap texture
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap->getTextureID());
// Pass texture unit to shader
shader->setParameter(cubemapParam, 0);
// Calculate matrix
const Camera& camera = *(renderContext->camera);
Matrix4 modelView = Matrix4(Matrix3(camera.getView()));
Matrix4 matrix = glm::inverse(modelView) * glm::inverse(camera.getProjection());
// Pass matrix to shader
shader->setParameter(matrixParam, matrix);
// Render quad
glBindVertexArray(quadVAO);
glDrawElementsBaseVertex(GL_TRIANGLES, quadIndexCount, GL_UNSIGNED_INT, (void*)0, 0);
}