💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

91 lines
3.0 KiB

/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ecs/systems/orbit-system.hpp"
#include "ecs/components/orbit-component.hpp"
#include "ecs/entity.hpp"
#include "physics/orbit/orbit.hpp"
namespace ecs {
orbit_system::orbit_system(ecs::registry& registry):
entity_system(registry),
universal_time(0.0),
time_scale(1.0),
ke_iterations(10),
ke_tolerance(1e-6)
{}
void orbit_system::update(double t, double dt)
{
// Add scaled timestep to current time
set_universal_time(universal_time + dt * time_scale);
// Update the orbital state of orbiting bodies
registry.view<orbit_component>().each(
[&](ecs::entity entity, auto& orbit)
{
// Calculate semi-minor axis (b)
const double b = physics::orbit::derive_semiminor_axis(orbit.elements.a, orbit.elements.e);
// Solve Kepler's equation for eccentric anomaly (E)
const double ea = physics::orbit::kepler_ea(orbit.elements.e, orbit.elements.ta, ke_iterations, ke_tolerance);
// Calculate radial distance and true anomaly (nu)
const double xv = orbit.elements.a * (std::cos(ea) - orbit.elements.e);
const double yv = b * std::sin(ea);
const double distance = std::sqrt(xv * xv + yv * yv);
const double ta = std::atan2(yv, xv);
// Calculate Cartesian position (r) in perifocal space
const math::vector3<double> r_perifocal = math::quaternion<double>::rotate_z(ta) * math::vector3<double>{distance, 0, 0};
/// @TODO Calculate Cartesian velocity (v) in perifocal space
//const math::vector3<double> v_perifocal = ...
// Construct perifocal to inertial reference frame
const physics::frame<double> perifocal_to_inertial = physics::orbit::inertial::to_perifocal
(
{0, 0, 0},
orbit.elements.raan,
orbit.elements.i,
orbit.elements.w
).inverse();
// Transform orbital state vectors from perifocal space to the parent inertial space
const math::vector3<double> r_inertial = perifocal_to_inertial.transform(r_perifocal);
//const math::vector3<double> v_inertial = perifocal_frame.transform(v_perifocal);
// Update orbital state of component
orbit.state.r = r_inertial;
//orbit.state.v = v_inertial;
});
}
void orbit_system::set_universal_time(double time)
{
universal_time = time;
}
void orbit_system::set_time_scale(double scale)
{
time_scale = scale;
}
} // namespace ecs