💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

467 lines
15 KiB

/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include "renderer/passes/sky-pass.hpp"
#include "resources/resource-manager.hpp"
#include "resources/string-table.hpp"
#include "gl/rasterizer.hpp"
#include "gl/framebuffer.hpp"
#include "gl/shader-program.hpp"
#include "gl/shader-input.hpp"
#include "gl/vertex-buffer.hpp"
#include "gl/vertex-array.hpp"
#include "gl/vertex-attribute-type.hpp"
#include "gl/drawing-mode.hpp"
#include "gl/texture-2d.hpp"
#include "gl/texture-wrapping.hpp"
#include "gl/texture-filter.hpp"
#include "renderer/vertex-attributes.hpp"
#include "renderer/render-context.hpp"
#include "renderer/model.hpp"
#include "renderer/material.hpp"
#include "scene/camera.hpp"
#include "utility/fundamental-types.hpp"
#include "color/color.hpp"
#include "astro/illuminance.hpp"
#include "math/interpolation.hpp"
#include "geom/cartesian.hpp"
#include "geom/spherical.hpp"
#include "physics/orbit/orbit.hpp"
#include "physics/light/photometry.hpp"
#include <cmath>
#include <stdexcept>
#include <glad/glad.h>
#include <iostream>
sky_pass::sky_pass(gl::rasterizer* rasterizer, const gl::framebuffer* framebuffer, resource_manager* resource_manager):
render_pass(rasterizer, framebuffer),
mouse_position({0.0f, 0.0f}),
sky_model(nullptr),
sky_material(nullptr),
sky_model_vao(nullptr),
sky_shader_program(nullptr),
moon_model(nullptr),
moon_material(nullptr),
moon_model_vao(nullptr),
moon_shader_program(nullptr),
time_tween(nullptr),
observer_altitude_tween(0.0f, math::lerp<float, float>),
sun_position_tween(float3{1.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
sun_color_tween(float3{1.0f, 1.0f, 1.0f}, math::lerp<float3, float>),
topocentric_frame_translation({0, 0, 0}, math::lerp<float3, float>),
topocentric_frame_rotation(math::quaternion<float>::identity(), math::nlerp<float>)
{
// Load star catalog
string_table* star_catalog = resource_manager->load<string_table>("stars.csv");
// Allocate star catalog vertex data
star_count = 0;
if (star_catalog->size() > 0)
star_count = star_catalog->size() - 1;
std::size_t star_vertex_size = 6;
std::size_t star_vertex_stride = star_vertex_size * sizeof(float);
float* star_vertex_data = new float[star_count * star_vertex_size];
float* star_vertex = star_vertex_data;
// Build star catalog vertex data
for (std::size_t i = 1; i < star_catalog->size(); ++i)
{
const string_table_row& catalog_row = (*star_catalog)[i];
double ra = 0.0;
double dec = 0.0;
double vmag = 0.0;
double bv_color = 0.0;
// Parse star catalog entry
try
{
ra = std::stod(catalog_row[1]);
dec = std::stod(catalog_row[2]);
vmag = std::stod(catalog_row[3]);
bv_color = std::stod(catalog_row[4]);
}
catch (const std::exception& e)
{
continue;
}
// Convert right ascension and declination from degrees to radians
ra = math::wrap_radians(math::radians(ra));
dec = math::wrap_radians(math::radians(dec));
// Transform spherical equatorial coordinates to rectangular equatorial coordinates
double3 position_bci = geom::spherical::to_cartesian(double3{1.0, dec, ra});
// Transform coordinates from equatorial space to inertial space
physics::frame<double> bci_to_inertial = physics::orbit::inertial::to_bci({0, 0, 0}, 0.0, math::radians(23.4393)).inverse();
double3 position_inertial = bci_to_inertial * position_bci;
// Convert color index to color temperature
double cct = color::index::bv_to_cct(bv_color);
// Calculate XYZ color from color temperature
double3 color_xyz = color::cct::to_xyz(cct);
// Transform XYZ color to ACEScg colorspace
double3 color_acescg = color::xyz::to_acescg(color_xyz);
// Convert apparent magnitude to irradiance (W/m^2)
double vmag_irradiance = std::pow(10.0, 0.4 * (-vmag - 19.0 + 0.4));
// Convert irradiance to illuminance
double vmag_illuminance = vmag_irradiance * (683.0 * 0.14);
// Scale color by illuminance
double3 scaled_color = color_acescg * vmag_illuminance;
// Build vertex
*(star_vertex++) = static_cast<float>(position_inertial.x);
*(star_vertex++) = static_cast<float>(position_inertial.y);
*(star_vertex++) = static_cast<float>(position_inertial.z);
*(star_vertex++) = static_cast<float>(scaled_color.x);
*(star_vertex++) = static_cast<float>(scaled_color.y);
*(star_vertex++) = static_cast<float>(scaled_color.z);
}
// Unload star catalog
resource_manager->unload("stars.csv");
// Create star catalog VBO
star_catalog_vbo = new gl::vertex_buffer(star_count * star_vertex_stride, star_vertex_data);
// Create star catalog VAO
star_catalog_vao = new gl::vertex_array();
// Bind star catalog vertex attributes
std::size_t vao_offset = 0;
star_catalog_vao->bind_attribute(VERTEX_POSITION_LOCATION, *star_catalog_vbo, 3, gl::vertex_attribute_type::float_32, star_vertex_stride, 0);
vao_offset += 3;
star_catalog_vao->bind_attribute(VERTEX_COLOR_LOCATION, *star_catalog_vbo, 3, gl::vertex_attribute_type::float_32, star_vertex_stride, sizeof(float) * vao_offset);
// Free star catalog vertex data
delete[] star_vertex_data;
// Load star shader
star_shader_program = resource_manager->load<gl::shader_program>("star.glsl");
star_model_view_input = star_shader_program->get_input("model_view");
star_projection_input = star_shader_program->get_input("projection");
star_distance_input = star_shader_program->get_input("star_distance");
star_exposure_input = star_shader_program->get_input("camera.exposure");
}
sky_pass::~sky_pass()
{}
void sky_pass::render(render_context* context) const
{
rasterizer->use_framebuffer(*framebuffer);
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
auto viewport = framebuffer->get_dimensions();
rasterizer->set_viewport(0, 0, std::get<0>(viewport), std::get<1>(viewport));
float time = (*time_tween)[context->alpha];
float2 resolution = {static_cast<float>(std::get<0>(viewport)), static_cast<float>(std::get<1>(viewport))};
const scene::camera& camera = *context->camera;
float clip_near = camera.get_clip_near_tween().interpolate(context->alpha);
float clip_far = camera.get_clip_far_tween().interpolate(context->alpha);
float3 model_scale = float3{1.0f, 1.0f, 1.0f} * (clip_near + clip_far) * 0.5f;
float4x4 model = math::scale(math::identity4x4<float>, model_scale);
float4x4 view = math::resize<4, 4>(math::resize<3, 3>(camera.get_view_tween().interpolate(context->alpha)));
float4x4 model_view = view * model;
float4x4 projection = camera.get_projection_tween().interpolate(context->alpha);
float4x4 view_projection = projection * view;
float4x4 model_view_projection = projection * model_view;
float exposure = std::exp2(camera.get_exposure_tween().interpolate(context->alpha));
// Interpolate observer altitude
float observer_altitude = observer_altitude_tween.interpolate(context->alpha);
// Construct tweened inertial to topocentric frame
physics::frame<float> topocentric_frame =
{
topocentric_frame_translation.interpolate(context->alpha),
topocentric_frame_rotation.interpolate(context->alpha)
};
// Get topocentric space direction to sun
float3 sun_position = sun_position_tween.interpolate(context->alpha);
float3 sun_direction = math::normalize(sun_position);
// Interpolate sun color
float3 sun_color = sun_color_tween.interpolate(context->alpha);
// Draw sky model
{
rasterizer->use_program(*sky_shader_program);
// Upload shader parameters
if (model_view_projection_input)
model_view_projection_input->upload(model_view_projection);
if (mouse_input)
mouse_input->upload(mouse_position);
if (resolution_input)
resolution_input->upload(resolution);
if (time_input)
time_input->upload(time);
if (exposure_input)
exposure_input->upload(exposure);
if (observer_altitude_input)
observer_altitude_input->upload(observer_altitude);
if (sun_direction_input)
sun_direction_input->upload(sun_direction);
if (sun_angular_radius_input)
sun_angular_radius_input->upload(sun_angular_radius);
if (sun_color_input)
sun_color_input->upload(sun_color);
if (scale_height_rm_input)
scale_height_rm_input->upload(scale_height_rm);
if (rayleigh_scattering_input)
rayleigh_scattering_input->upload(rayleigh_scattering);
if (mie_scattering_input)
mie_scattering_input->upload(mie_scattering);
if (mie_anisotropy_input)
mie_anisotropy_input->upload(mie_anisotropy);
if (atmosphere_radii_input)
atmosphere_radii_input->upload(atmosphere_radii);
sky_material->upload(context->alpha);
rasterizer->draw_arrays(*sky_model_vao, sky_model_drawing_mode, sky_model_start_index, sky_model_index_count);
}
glEnable(GL_BLEND);
//glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glBlendFunc(GL_ONE, GL_ONE);
// Draw moon model
/*
float3 moon_position = {0, 0, 0};
if (moon_position.y >= -moon_angular_radius)
{
float moon_distance = (clip_near + clip_far) * 0.5f;
float moon_radius = moon_angular_radius * moon_distance;
math::transform<float> moon_transform;
moon_transform.translation = moon_position * -moon_distance;
moon_transform.rotation = math::quaternion<float>::identity();
moon_transform.scale = {moon_radius, moon_radius, moon_radius};
model = math::matrix_cast(moon_transform);
model_view = view * model;
model_view_projection = projection * model_view;
float3x3 normal_model = math::transpose(math::inverse(math::resize<3, 3>(model)));
rasterizer->use_program(*moon_shader_program);
if (moon_model_view_projection_input)
moon_model_view_projection_input->upload(model_view_projection);
if (moon_normal_model_input)
moon_normal_model_input->upload(normal_model);
if (moon_moon_position_input)
moon_moon_position_input->upload(moon_position);
if (moon_sun_position_input)
moon_sun_position_input->upload(sun_position);
moon_material->upload(context->alpha);
rasterizer->draw_arrays(*moon_model_vao, moon_model_drawing_mode, moon_model_start_index, moon_model_index_count);
}
*/
// Draw stars
{
float star_distance = (clip_near + clip_far) * 0.5f;
model = math::resize<4, 4>(math::matrix_cast<float>(topocentric_frame.rotation));
model = math::scale(model, {star_distance, star_distance, star_distance});
model_view = view * model;
rasterizer->use_program(*star_shader_program);
if (star_model_view_input)
star_model_view_input->upload(model_view);
if (star_projection_input)
star_projection_input->upload(projection);
if (star_distance_input)
star_distance_input->upload(star_distance);
if (star_exposure_input)
star_exposure_input->upload(exposure);
rasterizer->draw_arrays(*star_catalog_vao, gl::drawing_mode::points, 0, star_count);
}
}
void sky_pass::set_sky_model(const model* model)
{
sky_model = model;
if (sky_model)
{
sky_model_vao = model->get_vertex_array();
const std::vector<model_group*>& groups = *model->get_groups();
for (model_group* group: groups)
{
sky_material = group->get_material();
sky_model_drawing_mode = group->get_drawing_mode();
sky_model_start_index = group->get_start_index();
sky_model_index_count = group->get_index_count();
}
if (sky_material)
{
sky_shader_program = sky_material->get_shader_program();
if (sky_shader_program)
{
model_view_projection_input = sky_shader_program->get_input("model_view_projection");
mouse_input = sky_shader_program->get_input("mouse");
resolution_input = sky_shader_program->get_input("resolution");
time_input = sky_shader_program->get_input("time");
exposure_input = sky_shader_program->get_input("camera.exposure");
observer_altitude_input = sky_shader_program->get_input("observer_altitude");
sun_direction_input = sky_shader_program->get_input("sun_direction");
sun_color_input = sky_shader_program->get_input("sun_color");
sun_angular_radius_input = sky_shader_program->get_input("sun_angular_radius");
scale_height_rm_input = sky_shader_program->get_input("scale_height_rm");
rayleigh_scattering_input = sky_shader_program->get_input("rayleigh_scattering");
mie_scattering_input = sky_shader_program->get_input("mie_scattering");
mie_anisotropy_input = sky_shader_program->get_input("mie_anisotropy");
atmosphere_radii_input = sky_shader_program->get_input("atmosphere_radii");
}
}
}
else
{
sky_model_vao = nullptr;
}
}
void sky_pass::set_moon_model(const model* model)
{
moon_model = model;
if (moon_model)
{
moon_model_vao = model->get_vertex_array();
const std::vector<model_group*>& groups = *model->get_groups();
for (model_group* group: groups)
{
moon_material = group->get_material();
moon_model_drawing_mode = group->get_drawing_mode();
moon_model_start_index = group->get_start_index();
moon_model_index_count = group->get_index_count();
}
if (moon_material)
{
moon_shader_program = moon_material->get_shader_program();
if (moon_shader_program)
{
moon_model_view_projection_input = moon_shader_program->get_input("model_view_projection");
moon_normal_model_input = moon_shader_program->get_input("normal_model");
moon_moon_position_input = moon_shader_program->get_input("moon_position");
moon_sun_position_input = moon_shader_program->get_input("sun_position");
}
}
}
else
{
moon_model = nullptr;
}
}
void sky_pass::update_tweens()
{
observer_altitude_tween.update();
sun_position_tween.update();
sun_color_tween.update();
topocentric_frame_translation.update();
topocentric_frame_rotation.update();
}
void sky_pass::set_time_tween(const tween<double>* time)
{
this->time_tween = time;
}
void sky_pass::set_topocentric_frame(const physics::frame<float>& frame)
{
topocentric_frame_translation[1] = frame.translation;
topocentric_frame_rotation[1] = frame.rotation;
}
void sky_pass::set_sun_position(const float3& position)
{
sun_position_tween[1] = position;
}
void sky_pass::set_sun_color(const float3& color)
{
sun_color_tween[1] = color;
}
void sky_pass::set_sun_angular_radius(float radius)
{
sun_angular_radius = radius;
}
void sky_pass::set_observer_altitude(float altitude)
{
observer_altitude_tween[1] = altitude;
}
void sky_pass::set_scale_heights(float rayleigh, float mie)
{
scale_height_rm = {rayleigh, mie};
}
void sky_pass::set_scattering_coefficients(const float3& r, const float3& m)
{
rayleigh_scattering = r;
mie_scattering = m;
}
void sky_pass::set_mie_anisotropy(float g)
{
mie_anisotropy = {g, g * g};
}
void sky_pass::set_atmosphere_radii(float inner, float outer)
{
atmosphere_radii.x = inner;
atmosphere_radii.y = outer;
atmosphere_radii.z = outer * outer;
}
void sky_pass::handle_event(const mouse_moved_event& event)
{
mouse_position = {static_cast<float>(event.x), static_cast<float>(event.y)};
}