💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

351 lines
13 KiB

/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ecs/systems/astronomy-system.hpp"
#include "astro/apparent-size.hpp"
#include "ecs/components/orbit-component.hpp"
#include "ecs/components/blackbody-component.hpp"
#include "ecs/components/atmosphere-component.hpp"
#include "ecs/components/transform-component.hpp"
#include "geom/intersection.hpp"
#include "color/color.hpp"
#include "physics/orbit/orbit.hpp"
#include "physics/time/ut1.hpp"
#include "physics/light/blackbody.hpp"
#include "physics/light/photometry.hpp"
#include "physics/light/luminosity.hpp"
#include "physics/light/refraction.hpp"
#include "physics/atmosphere.hpp"
#include "math/quadrature.hpp"
#include "geom/cartesian.hpp"
#include <iostream>
namespace ecs {
template <class T>
math::vector3<T> transmittance(T depth_r, T depth_m, T depth_o, const math::vector3<T>& beta_r, const math::vector3<T>& beta_m)
{
math::vector3<T> transmittance_r = beta_r * depth_r;
math::vector3<T> transmittance_m = beta_m * 1.1 * depth_m;
math::vector3<T> transmittance_o = {0, 0, 0};
math::vector3<T> t = transmittance_r + transmittance_m + transmittance_o;
t.x = std::exp(-t.x);
t.y = std::exp(-t.y);
t.z = std::exp(-t.z);
return t;
}
astronomy_system::astronomy_system(ecs::registry& registry):
entity_system(registry),
universal_time(0.0),
time_scale(1.0),
reference_body(entt::null),
reference_body_axial_tilt(0.0),
reference_body_axial_rotation(0.0),
sun_light(nullptr),
sky_pass(nullptr)
{
// RGB wavelengths determined by matching wavelengths to XYZ, transforming XYZ to ACEScg, then selecting the max wavelengths for R, G, and B.
rgb_wavelengths_nm = {602.224, 541.069, 448.143};
rgb_wavelengths_m = rgb_wavelengths_nm * 1e-9;
registry.on_construct<ecs::blackbody_component>().connect<&astronomy_system::on_blackbody_construct>(this);
registry.on_replace<ecs::blackbody_component>().connect<&astronomy_system::on_blackbody_replace>(this);
registry.on_construct<ecs::atmosphere_component>().connect<&astronomy_system::on_atmosphere_construct>(this);
registry.on_replace<ecs::atmosphere_component>().connect<&astronomy_system::on_atmosphere_replace>(this);
}
void astronomy_system::update(double t, double dt)
{
// Add scaled timestep to current time
set_universal_time(universal_time + dt * time_scale);
// Abort if reference body has not been set
if (reference_body == entt::null)
return;
// Abort if reference body has no orbit component
if (!registry.has<ecs::orbit_component>(reference_body))
return;
// Update axial rotation of reference body
reference_body_axial_rotation = physics::time::ut1::era(universal_time);
// Get orbit component of reference body
const auto& reference_orbit = registry.get<ecs::orbit_component>(reference_body);
/// Construct reference frame which transforms coordinates from inertial space to reference body BCBF space
inertial_to_bcbf = physics::orbit::inertial::to_bcbf
(
reference_orbit.state.r,
reference_orbit.elements.i,
reference_body_axial_tilt,
reference_body_axial_rotation
);
/// Construct reference frame which transforms coordinates from inertial space to reference body topocentric space
inertial_to_topocentric = inertial_to_bcbf * bcbf_to_topocentric;
// Set the transform component translations of orbiting bodies to their topocentric positions
registry.view<orbit_component, transform_component>().each(
[&](ecs::entity entity, auto& orbit, auto& transform)
{
// Transform Cartesian position vector (r) from inertial space to topocentric space
const math::vector3<double> r_topocentric = inertial_to_topocentric * orbit.state.r;
// Update local transform
transform.local.translation = math::type_cast<float>(r_topocentric);
});
const double earth_radius = 6.3781e6;
// Update blackbody lighting
registry.view<blackbody_component, orbit_component>().each(
[&](ecs::entity entity, auto& blackbody, auto& orbit)
{
// Calculate blackbody inertial basis
double3 blackbody_forward_inertial = math::normalize(reference_orbit.state.r - orbit.state.r);
double3 blackbody_up_inertial = {0, 0, 1};
// Transform blackbody inertial position and basis into topocentric space
double3 blackbody_position_topocentric = inertial_to_topocentric * orbit.state.r;
double3 blackbody_forward_topocentric = inertial_to_topocentric.rotation * blackbody_forward_inertial;
double3 blackbody_up_topocentric = inertial_to_topocentric.rotation * blackbody_up_inertial;
// Calculate distance from observer to blackbody
double blackbody_distance = math::length(blackbody_position_topocentric);
// Calculate blackbody distance attenuation
double distance_attenuation = 1.0 / (blackbody_distance * blackbody_distance);
// Init atmospheric transmittance
double3 atmospheric_transmittance = {1.0, 1.0, 1.0};
// Get atmosphere component of reference body (if any)
if (this->registry.has<ecs::atmosphere_component>(reference_body))
{
const ecs::atmosphere_component& atmosphere = this->registry.get<ecs::atmosphere_component>(reference_body);
// Altitude of observer in meters
geom::ray<double> sample_ray;
sample_ray.origin = {0, observer_location[0], 0};
sample_ray.direction = math::normalize(blackbody_position_topocentric);
geom::sphere<double> exosphere;
exosphere.center = {0, 0, 0};
exosphere.radius = earth_radius + atmosphere.exosphere_altitude;
auto intersection_result = geom::ray_sphere_intersection(sample_ray, exosphere);
if (std::get<0>(intersection_result))
{
double3 sample_start = sample_ray.origin;
double3 sample_end = sample_ray.extrapolate(std::get<2>(intersection_result));
double optical_depth_r = physics::atmosphere::optical_depth(sample_start, sample_end, earth_radius, atmosphere.rayleigh_scale_height, 32);
double optical_depth_k = physics::atmosphere::optical_depth(sample_start, sample_end, earth_radius, atmosphere.mie_scale_height, 32);
double optical_depth_o = 0.0;
atmospheric_transmittance = transmittance(optical_depth_r, optical_depth_k, optical_depth_o, atmosphere.rayleigh_scattering, atmosphere.mie_scattering);
}
}
if (sun_light != nullptr)
{
// Update blackbody light transform
sun_light->set_translation(math::normalize(math::type_cast<float>(blackbody_position_topocentric)));
sun_light->set_rotation
(
math::look_rotation
(
math::type_cast<float>(blackbody_forward_topocentric),
math::type_cast<float>(blackbody_up_topocentric)
)
);
// Update blackbody light color and intensity
sun_light->set_color(math::type_cast<float>(blackbody.luminous_intensity * atmospheric_transmittance));
sun_light->set_intensity(static_cast<float>(distance_attenuation));
// Upload blackbody params to sky pass
if (this->sky_pass)
{
this->sky_pass->set_sun_position(math::type_cast<float>(blackbody_position_topocentric));
this->sky_pass->set_sun_color(math::type_cast<float>(blackbody.luminous_intensity * distance_attenuation));
double blackbody_angular_radius = std::asin((blackbody.radius * 2.0) / (blackbody_distance * 2.0));
this->sky_pass->set_sun_angular_radius(static_cast<float>(blackbody_angular_radius));
}
}
});
// Update sky pass topocentric frame
if (sky_pass != nullptr)
{
// Upload topocentric frame to sky pass
sky_pass->set_topocentric_frame
(
physics::frame<float>
{
math::type_cast<float>(inertial_to_topocentric.translation),
math::type_cast<float>(inertial_to_topocentric.rotation)
}
);
// Upload observer altitude to sky pass
float observer_altitude = observer_location[0] - earth_radius;
sky_pass->set_observer_altitude(observer_altitude);
// Upload atmosphere params to sky pass
if (this->registry.has<ecs::atmosphere_component>(reference_body))
{
const ecs::atmosphere_component& atmosphere = this->registry.get<ecs::atmosphere_component>(reference_body);
sky_pass->set_scale_heights(atmosphere.rayleigh_scale_height, atmosphere.mie_scale_height);
sky_pass->set_scattering_coefficients(math::type_cast<float>(atmosphere.rayleigh_scattering), math::type_cast<float>(atmosphere.mie_scattering));
sky_pass->set_mie_anisotropy(atmosphere.mie_anisotropy);
sky_pass->set_atmosphere_radii(earth_radius, earth_radius + atmosphere.exosphere_altitude);
}
}
}
void astronomy_system::set_universal_time(double time)
{
universal_time = time;
}
void astronomy_system::set_time_scale(double scale)
{
time_scale = scale;
}
void astronomy_system::set_reference_body(ecs::entity entity)
{
reference_body = entity;
}
void astronomy_system::set_reference_body_axial_tilt(double angle)
{
reference_body_axial_tilt = angle;
}
void astronomy_system::set_observer_location(const double3& location)
{
observer_location = location;
// Construct reference frame which transforms coordinates from SEZ to EZS
sez_to_ezs = physics::frame<double>
{
{0, 0, 0},
math::normalize
(
math::quaternion<double>::rotate_x(-math::half_pi<double>) *
math::quaternion<double>::rotate_z(-math::half_pi<double>)
)
};
// Construct reference frame which transforms coordinates from EZS to SEZ
ezs_to_sez = sez_to_ezs.inverse();
// Construct reference frame which transforms coordinates from BCBF space to topocentric space
bcbf_to_topocentric = physics::orbit::bcbf::to_topocentric
(
observer_location[0], // Radial distance
observer_location[1], // Latitude
observer_location[2] // Longitude
) * sez_to_ezs;
}
void astronomy_system::set_sun_light(scene::directional_light* light)
{
sun_light = light;
}
void astronomy_system::set_sky_pass(::sky_pass* pass)
{
this->sky_pass = pass;
}
void astronomy_system::on_blackbody_construct(ecs::registry& registry, ecs::entity entity, ecs::blackbody_component& blackbody)
{
on_blackbody_replace(registry, entity, blackbody);
}
void astronomy_system::on_blackbody_replace(ecs::registry& registry, ecs::entity entity, ecs::blackbody_component& blackbody)
{
// Calculate the surface area of a spherical blackbody
const double surface_area = 4.0 * math::pi<double> * blackbody.radius * blackbody.radius;
// Construct a lambda function which calculates the blackbody's RGB luminous intensity of a given wavelength
auto rgb_luminous_intensity = [blackbody, surface_area](double wavelength_nm) -> double3
{
// Convert wavelength from nanometers to meters
const double wavelength_m = wavelength_nm * 1e-9;
// Calculate the spectral intensity of the wavelength
const double spectral_intensity = physics::light::blackbody::spectral_intensity<double>(blackbody.temperature, surface_area, wavelength_m);
// Calculate the ACEScg color of the wavelength using CIE color matching functions
double3 spectral_color = color::xyz::to_acescg(color::xyz::match(wavelength_nm));
// Scale the spectral color by spectral intensity
return spectral_color * spectral_intensity * 1e-9 * physics::light::max_luminous_efficacy<double>;
};
// Construct a range of sample wavelengths in the visible spectrum
std::vector<double> samples(780 - 280);
std::iota(samples.begin(), samples.end(), 280);
// Integrate the blackbody RGB luminous intensity over wavelengths in the visible spectrum
blackbody.luminous_intensity = math::quadrature::simpson(rgb_luminous_intensity, samples.begin(), samples.end());
}
void astronomy_system::on_atmosphere_construct(ecs::registry& registry, ecs::entity entity, ecs::atmosphere_component& atmosphere)
{
on_atmosphere_replace(registry, entity, atmosphere);
}
void astronomy_system::on_atmosphere_replace(ecs::registry& registry, ecs::entity entity, ecs::atmosphere_component& atmosphere)
{
// Calculate polarization factors
const double rayleigh_polarization = physics::atmosphere::polarization(atmosphere.index_of_refraction, atmosphere.rayleigh_density);
const double mie_polarization = physics::atmosphere::polarization(atmosphere.index_of_refraction, atmosphere.mie_density);
// Calculate Rayleigh scattering coefficients
atmosphere.rayleigh_scattering =
{
physics::atmosphere::scattering_rayleigh(rgb_wavelengths_m.x, atmosphere.rayleigh_density, rayleigh_polarization),
physics::atmosphere::scattering_rayleigh(rgb_wavelengths_m.y, atmosphere.rayleigh_density, rayleigh_polarization),
physics::atmosphere::scattering_rayleigh(rgb_wavelengths_m.z, atmosphere.rayleigh_density, rayleigh_polarization)
};
// Calculate Mie scattering coefficients
const double mie_scattering = physics::atmosphere::scattering_mie(atmosphere.mie_density, mie_polarization);
atmosphere.mie_scattering =
{
mie_scattering,
mie_scattering,
mie_scattering
};
}
} // namespace ecs