💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

383 lines
13 KiB

/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ecs/systems/astronomy-system.hpp"
#include "astro/apparent-size.hpp"
#include "ecs/components/orbit-component.hpp"
#include "ecs/components/blackbody-component.hpp"
#include "ecs/components/atmosphere-component.hpp"
#include "ecs/components/transform-component.hpp"
#include "geom/intersection.hpp"
#include "color/color.hpp"
#include "physics/orbit/orbit.hpp"
#include "physics/time/ut1.hpp"
#include "physics/light/blackbody.hpp"
#include "physics/light/photometry.hpp"
#include "physics/light/luminosity.hpp"
#include "geom/cartesian.hpp"
#include <iostream>
namespace ecs {
/**
* Approximates the density of exponentially-distributed atmospheric particles between two points using the trapezoidal rule.
*
* @param a Start point.
* @param b End point.
* @param r Radius of the planet.
* @param sh Scale height of the atmospheric particles.
* @param n Number of samples.
*/
template <class T>
T optical_depth(const math::vector3<T>& a, const math::vector3<T>& b, T r, T sh, std::size_t n)
{
T inverse_sh = T(-1) / sh;
T h = math::length(b - a) / T(n);
math::vector3<T> dy = (b - a) / T(n);
math::vector3<T> y = a + dy;
T f_x = std::exp((length(a) - r) * inverse_sh);
T f_y = std::exp((length(y) - r) * inverse_sh);
T sum = (f_x + f_y);
for (std::size_t i = 1; i < n; ++i)
{
f_x = f_y;
y += dy;
f_y = std::exp((length(y) - r) * inverse_sh);
sum += (f_x + f_y);
}
return sum / T(2) * h;
}
template <class T>
math::vector3<T> transmittance(T depth_r, T depth_m, T depth_o, const math::vector3<T>& beta_r, const math::vector3<T>& beta_m)
{
math::vector3<T> transmittance_r = beta_r * depth_r;
math::vector3<T> transmittance_m = beta_m * depth_m;
math::vector3<T> transmittance_o = {0, 0, 0};
math::vector3<T> t = transmittance_r + transmittance_m + transmittance_o;
t.x = std::exp(-t.x);
t.y = std::exp(-t.y);
t.z = std::exp(-t.z);
return t;
}
double calc_beta_r(double wavelength, double ior, double density)
{
double wavelength2 = wavelength * wavelength;
double ior2m1 = ior * ior - 1.0;
double num = 8.0 * (math::pi<double> * math::pi<double> * math::pi<double>) * ior2m1 * ior2m1;
double den = 3.0 * density * (wavelength2 * wavelength2);
return num / den;
}
astronomy_system::astronomy_system(ecs::registry& registry):
entity_system(registry),
universal_time(0.0),
time_scale(1.0),
reference_body(entt::null),
reference_body_axial_tilt(0.0),
reference_body_axial_rotation(0.0),
sun_light(nullptr),
sky_pass(nullptr)
{
registry.on_construct<ecs::blackbody_component>().connect<&astronomy_system::on_blackbody_construct>(this);
registry.on_replace<ecs::blackbody_component>().connect<&astronomy_system::on_blackbody_replace>(this);
registry.on_construct<ecs::atmosphere_component>().connect<&astronomy_system::on_atmosphere_construct>(this);
registry.on_replace<ecs::atmosphere_component>().connect<&astronomy_system::on_atmosphere_replace>(this);
}
void astronomy_system::update(double t, double dt)
{
// Add scaled timestep to current time
set_universal_time(universal_time + dt * time_scale);
// Abort if reference body has not been set
if (reference_body == entt::null)
return;
// Abort if reference body has no orbit component
if (!registry.has<ecs::orbit_component>(reference_body))
return;
// Update axial rotation of reference body
reference_body_axial_rotation = physics::time::ut1::era(universal_time);
// Get orbit component of reference body
const auto& reference_orbit = registry.get<ecs::orbit_component>(reference_body);
/// Construct reference frame which transforms coordinates from inertial space to reference body BCBF space
inertial_to_bcbf = physics::orbit::inertial::to_bcbf
(
reference_orbit.state.r,
reference_orbit.elements.i,
reference_body_axial_tilt,
reference_body_axial_rotation
);
/// Construct reference frame which transforms coordinates from inertial space to reference body topocentric space
inertial_to_topocentric = inertial_to_bcbf * bcbf_to_topocentric;
// Set the transform component translations of orbiting bodies to their topocentric positions
registry.view<orbit_component, transform_component>().each(
[&](ecs::entity entity, auto& orbit, auto& transform)
{
// Transform Cartesian position vector (r) from inertial space to topocentric space
const math::vector3<double> r_topocentric = inertial_to_topocentric * orbit.state.r;
// Update local transform
transform.local.translation = math::type_cast<float>(r_topocentric);
});
// Update blackbody lighting
registry.view<blackbody_component, orbit_component>().each(
[&](ecs::entity entity, auto& blackbody, auto& orbit)
{
// Calculate blackbody inertial basis
double3 blackbody_forward_inertial = math::normalize(reference_orbit.state.r - orbit.state.r);
double3 blackbody_up_inertial = {0, 0, 1};
// Transform blackbody inertial position and basis into topocentric space
double3 blackbody_position_topocentric = inertial_to_topocentric * orbit.state.r;
double3 blackbody_forward_topocentric = inertial_to_topocentric.rotation * blackbody_forward_inertial;
double3 blackbody_up_topocentric = inertial_to_topocentric.rotation * blackbody_up_inertial;
// Calculate distance from observer to blackbody
const double meters_per_au = 1.496e+11;
double blackbody_distance = math::length(blackbody_position_topocentric) * meters_per_au;
// Calculate blackbody illuminance according to distance
double blackbody_illuminance = blackbody.luminous_intensity / (blackbody_distance * blackbody_distance);
// Get blackbody color
double3 blackbody_color = blackbody.color;
// Get atmosphere component of reference body, if any
if (this->registry.has<ecs::atmosphere_component>(reference_body))
{
const ecs::atmosphere_component& atmosphere = this->registry.get<ecs::atmosphere_component>(reference_body);
const double earth_radius_au = 4.26352e-5;
const double earth_radius_m = earth_radius_au * meters_per_au;
// Altitude of observer in meters
geom::ray<double> sample_ray;
sample_ray.origin = {0, observer_location[0] * meters_per_au, 0};
sample_ray.direction = math::normalize(blackbody_position_topocentric);
geom::sphere<double> exosphere;
exosphere.center = {0, 0, 0};
exosphere.radius = earth_radius_m + atmosphere.exosphere_altitude;
auto intersection_result = geom::ray_sphere_intersection(sample_ray, exosphere);
if (std::get<0>(intersection_result))
{
double3 sample_start = sample_ray.origin;
double3 sample_end = sample_ray.extrapolate(std::get<2>(intersection_result));
double optical_depth_r = optical_depth(sample_start, sample_end, earth_radius_m, atmosphere.rayleigh_scale_height, 32);
double optical_depth_k = optical_depth(sample_start, sample_end, earth_radius_m, atmosphere.mie_scale_height, 32);
double optical_depth_o = 0.0;
double3 attenuation = transmittance(optical_depth_r, optical_depth_k, optical_depth_o, atmosphere.rayleigh_scattering_coefficients, atmosphere.mie_scattering_coefficients);
// Attenuate blackbody color
blackbody_color *= attenuation;
}
}
if (sun_light != nullptr)
{
// Update blackbody light transform
sun_light->set_translation(math::type_cast<float>(blackbody_position_topocentric));
sun_light->set_rotation
(
math::look_rotation
(
math::type_cast<float>(blackbody_forward_topocentric),
math::type_cast<float>(blackbody_up_topocentric)
)
);
// Update blackbody light color and intensity
sun_light->set_color(math::type_cast<float>(blackbody_color));
sun_light->set_intensity(static_cast<float>(blackbody_illuminance));
// Pass blackbody params to sky pas
if (this->sky_pass)
{
this->sky_pass->set_sun_object(sun_light);
this->sky_pass->set_sun_color(math::type_cast<float>(blackbody.color * blackbody_illuminance));
}
}
});
// Update sky pass topocentric frame
if (sky_pass != nullptr)
{
sky_pass->set_topocentric_frame
(
physics::frame<float>
{
math::type_cast<float>(inertial_to_topocentric.translation),
math::type_cast<float>(inertial_to_topocentric.rotation)
}
);
}
}
void astronomy_system::set_universal_time(double time)
{
universal_time = time;
}
void astronomy_system::set_time_scale(double scale)
{
time_scale = scale;
}
void astronomy_system::set_reference_body(ecs::entity entity)
{
reference_body = entity;
}
void astronomy_system::set_reference_body_axial_tilt(double angle)
{
reference_body_axial_tilt = angle;
}
void astronomy_system::set_observer_location(const double3& location)
{
observer_location = location;
// Construct reference frame which transforms coordinates from SEZ to EZS
sez_to_ezs = physics::frame<double>
{
{0, 0, 0},
math::normalize
(
math::quaternion<double>::rotate_x(-math::half_pi<double>) *
math::quaternion<double>::rotate_z(-math::half_pi<double>)
)
};
// Construct reference frame which transforms coordinates from EZS to SEZ
ezs_to_sez = sez_to_ezs.inverse();
// Construct reference frame which transforms coordinates from BCBF space to topocentric space
bcbf_to_topocentric = physics::orbit::bcbf::to_topocentric
(
observer_location[0], // Radial distance
observer_location[1], // Latitude
observer_location[2] // Longitude
) * sez_to_ezs;
}
void astronomy_system::set_sun_light(scene::directional_light* light)
{
sun_light = light;
}
void astronomy_system::set_sky_pass(::sky_pass* pass)
{
this->sky_pass = pass;
}
void astronomy_system::on_blackbody_construct(ecs::registry& registry, ecs::entity entity, ecs::blackbody_component& blackbody)
{
on_blackbody_replace(registry, entity, blackbody);
}
void astronomy_system::on_blackbody_replace(ecs::registry& registry, ecs::entity entity, ecs::blackbody_component& blackbody)
{
// Calculate surface area of spherical blackbody
const double surface_area = double(4) * math::pi<double> * blackbody.radius * blackbody.radius;
// Calculate radiant flux
blackbody.radiant_flux = physics::light::blackbody::radiant_flux(blackbody.temperature, surface_area);
// Blackbody spectral power distribution function
auto spd = [blackbody](double x) -> double
{
// Convert nanometers to meters
x *= double(1e-9);
return physics::light::blackbody::spectral_radiance<double>(blackbody.temperature, x, physics::constants::speed_of_light<double>);
};
// Luminous efficiency function (photopic)
auto lef = [](double x) -> double
{
return physics::light::luminosity::photopic<double>(x);
};
// Construct range of spectral sample points
std::vector<double> samples(10000);
std::iota(samples.begin(), samples.end(), 10);
// Calculate luminous efficiency
const double efficiency = physics::light::luminous_efficiency<double>(spd, lef, samples.begin(), samples.end());
// Convert radiant flux to luminous flux
blackbody.luminous_flux = physics::light::watts_to_lumens<double>(blackbody.radiant_flux, efficiency);
// Calculate luminous intensity from luminous flux
blackbody.luminous_intensity = blackbody.luminous_flux / (4.0 * math::pi<double>);
// Calculate blackbody color from temperature
double3 color_xyz = color::cct::to_xyz(blackbody.temperature);
blackbody.color = color::xyz::to_acescg(color_xyz);
}
void astronomy_system::on_atmosphere_construct(ecs::registry& registry, ecs::entity entity, ecs::atmosphere_component& atmosphere)
{
on_atmosphere_replace(registry, entity, atmosphere);
}
void astronomy_system::on_atmosphere_replace(ecs::registry& registry, ecs::entity entity, ecs::atmosphere_component& atmosphere)
{
// ACEScg wavelengths determined by matching wavelengths to XYZ, transforming XYZ to ACEScg, then selecting the max wavelengths for R, G, and B.
const double3 acescg_wavelengths_nm = {600.0, 540.0, 450.0};
const double3 acescg_wavelengths_m = acescg_wavelengths_nm * 1.0e-9;
// Calculate Rayleigh scattering coefficients
const double air_ior = 1.0003;
const double molecular_density = 2.545e25;
double3 beta_r;
atmosphere.rayleigh_scattering_coefficients =
{
calc_beta_r(acescg_wavelengths_m.x, air_ior, molecular_density),
calc_beta_r(acescg_wavelengths_m.y, air_ior, molecular_density),
calc_beta_r(acescg_wavelengths_m.z, air_ior, molecular_density)
};
// Calculate Mie scattering coefficients
atmosphere.mie_scattering_coefficients = {2.0e-6, 2.0e-6, 2.0e-6};
}
} // namespace ecs