/* * Copyright (C) 2020 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ /* * Easing Functions (Equations) * * Copyright (C) 2001 Robert Penner * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of the author nor the names of contributors may be used to * endorse or promote products derived from this software without specific * prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ANTKEEPER_EASE_HPP #define ANTKEEPER_EASE_HPP #include #include #include /** * Container for templated easing functions. * * All easing functions require the following operators to be defined: * * value_type operator+(const value_type&, const value_type&); * value_type operator-(const value_type&, const value_type&); * value_type operator*(const value_type&, scalar_type) const; * * @tparam T Value type. * @tparam S Scalar type. */ template struct ease { typedef T value_type; typedef S scalar_type; /// Linearly interpolates between @p x and @p y. static T linear(const T& x, const T& y, S a); /// Logarithmically interpolates between @p x and @p y. static T log(const T& x, const T& y, S a); static T in_sine(const T& x, const T& y, S a); static T out_sine(const T& x, const T& y, S a); static T in_out_sine(const T& x, const T& y, S a); static T in_quad(const T& x, const T& y, S a); static T out_quad(const T& x, const T& y, S a); static T in_out_quad(const T& x, const T& y, S a); static T in_cubic(const T& x, const T& y, S a); static T out_cubic(const T& x, const T& y, S a); static T in_out_cubic(const T& x, const T& y, S a); static T in_quart(const T& x, const T& y, S a); static T out_quart(const T& x, const T& y, S a); static T in_out_quart(const T& x, const T& y, S a); static T in_quint(const T& x, const T& y, S a); static T out_quint(const T& x, const T& y, S a); static T in_out_quint(const T& x, const T& y, S a); static T in_expo(const T& x, const T& y, S a); static T out_expo(const T& x, const T& y, S a); static T in_out_expo(const T& x, const T& y, S a); static T in_circ(const T& x, const T& y, S a); static T out_circ(const T& x, const T& y, S a); static T in_out_circ(const T& x, const T& y, S a); static T in_back(const T& x, const T& y, S a); static T out_back(const T& x, const T& y, S a); static T in_out_back(const T& x, const T& y, S a); static T in_elastic(const T& x, const T& y, S a); static T out_elastic(const T& x, const T& y, S a); static T in_out_elastic(const T& x, const T& y, S a); static T in_bounce(const T& x, const T& y, S a); static T out_bounce(const T& x, const T& y, S a); static T in_out_bounce(const T& x, const T& y, S a); }; template inline T ease::linear(const T& x, const T& y, S a) { return (y - x) * a + x; } template inline T ease::log(const T& x, const T& y, S a) { //return std::exp(linear(std::log(x), std::log(y), a)); return x * std::pow(y / x, a); } template T ease::in_sine(const T& x, const T& y, S a) { return linear(y, x, std::cos(a * vmq::half_pi)); } template T ease::out_sine(const T& x, const T& y, S a) { return linear(x, y, std::sin(a * vmq::half_pi)); } template T ease::in_out_sine(const T& x, const T& y, S a) { return linear(x, y, -(std::cos(a * vmq::pi) - S(1)) * S(0.5)); } template T ease::in_quad(const T& x, const T& y, S a) { return linear(x, y, a * a); } template T ease::out_quad(const T& x, const T& y, S a) { return linear(x, y, (S(2) - a) * a); } template T ease::in_out_quad(const T& x, const T& y, S a) { return linear(x, y, (a < S(0.5)) ? S(2) * a * a : -(S(2) * a * a - S(4) * a + S(1))); } template T ease::in_cubic(const T& x, const T& y, S a) { return linear(x, y, a * a * a); } template T ease::out_cubic(const T& x, const T& y, S a) { return linear(x, y, a * ((a - S(3)) * a + S(3))); } template T ease::in_out_cubic(const T& x, const T& y, S a) { return linear(x, y, (a < S(0.5)) ? S(4) * a * a * a : S(4) * a * a * a - S(12) * a * a + S(12) * a - 3); } template T ease::in_quart(const T& x, const T& y, S a) { return linear(x, y, a * a * a * a); } template T ease::out_quart(const T& x, const T& y, S a) { return linear(x, y, a * (a * ((S(4) - a) * a - S(6)) + S(4))); } template T ease::in_out_quart(const T& x, const T& y, S a) { return linear(x, y, (a < S(0.5)) ? S(8) * a * a * a * a : a * (a * ((S(32) - S(8) * a) * a - S(48)) + S(32)) - S(7)); } template T ease::in_quint(const T& x, const T& y, S a) { return linear(x, y, a * a * a * a * a); } template T ease::out_quint(const T& x, const T& y, S a) { return linear(x, y, a * (a * (a * ((a - S(5)) * a + S(10)) - S(10)) + S(5))); } template T ease::in_out_quint(const T& x, const T& y, S a) { if (a < S(0.5)) { return linear(x, y, S(16) * a * a * a * a * a); } else { a = S(2) * (S(1) - a); return linear(x, y, S(0.5) * (S(2) - a * a * a * a * a)); } } template T ease::in_expo(const T& x, const T& y, S a) { return (a == S(0)) ? x : linear(x, y, std::pow(S(1024), a - S(1))); } template T ease::out_expo(const T& x, const T& y, S a) { return (a == S(1)) ? y : linear(y, x, std::pow(S(2), S(-10) * a)); } template T ease::in_out_expo(const T& x, const T& y, S a) { if (a == S(0)) { return x; } else if (a == S(1)) { return y; } return linear(x, y, (a < S(0.5)) ? std::pow(S(2), S(20) * a - S(11)) : S(1) - std::pow(S(2), S(9) - S(20) * a)); } template T ease::in_circ(const T& x, const T& y, S a) { return linear(y, x, std::sqrt(S(1) - a * a)); } template T ease::out_circ(const T& x, const T& y, S a) { return linear(x, y, std::sqrt(-(a - S(2)) * a)); } template T ease::in_out_circ(const T& x, const T& y, S a) { if (a < S(0.5)) { return linear(x, y, S(0.5) - S(0.5) * std::sqrt(S(1) - S(4) * a * a)); } else { return linear(x, y, S(0.5) * (std::sqrt(S(-4) * (a - S(2)) * a - S(3)) + S(1))); } } template T ease::in_back(const T& x, const T& y, S a) { const S c = S(1.70158); return linear(x, y, a * a * (a * c + a - c)); } template T ease::out_back(const T& x, const T& y, S a) { const S c = S(1.70158); a -= S(1); return linear(x, y, a * a * (a * c + a + c) + S(1)); } template T ease::in_out_back(const T& x, const T& y, S a) { const S c = S(1.70158) * S(1.525f); if (a < S(0.5)) { return linear(x, y, a * a * (a * (S(4) * c + S(4)) - S(2) * c)); } else { S b = S(1) - S(2) * a; return linear(x, y, b * b * (a * c + a - c * S(0.5) - S(1)) + S(1)); } } template T ease::in_elastic(const T& x, const T& y, S a) { if (a == S(0)) { return x; } else if (a == S(1)) { return y; } return linear(x, y, -std::pow(S(1024), a - S(1)) * std::sin(S(20.944) * (a - S(1.075)))); } template T ease::out_elastic(const T& x, const T& y, S a) { if (a == S(0)) { return x; } else if (a == S(1)) { return y; } return linear(x, y, std::pow(S(2), S(-10) * a) * std::sin(S(20.944) * (a - S(0.075))) + S(1)); } template T ease::in_out_elastic(const T& x, const T& y, S a) { if (a == S(0)) { return x; } else if (a == S(1)) { return y; } if (a < S(0.5)) { return linear(x, y, std::pow(S(2), S(20) * a - S(11)) * std::sin(S(15.5334) - S(27.5293) * a)); } else { return linear(y, x, std::pow(2, S(9) - S(20) * a) * std::sin(S(15.5334) - S(27.5293) * a)); } } template T ease::in_bounce(const T& x, const T& y, S a) { return linear(x, y, S(1) - ease::out_bounce(S(0), S(1), S(1) - a)); } template T ease::out_bounce(const T& x, const T& y, S a) { const S n = S(7.5625); const S d = S(2.75); if (a < S(1) / d) { a = n * a * a; } else if (a < S(2) / d) { a -= S(1.5) / d; a = n * a * a + S(0.75); } else if (a < S(2.5) / d) { a -= S(2.25) / d; a = n * a * a + S(0.9375); } else { a -= S(2.625) / d; a = n * a * a + S(0.984375); } return linear(x, y, a); } template T ease::in_out_bounce(const T& x, const T& y, S a) { if (a < S(0.5)) { return linear(x, y, (S(1) - ease::out_bounce(S(0), S(1), S(1) - S(2) * a)) * S(0.5)); } else { return linear(x, y, (S(1) + ease::out_bounce(S(0), S(1), S(2) * a - S(1))) * S(0.5)); } } #endif // ANTKEEPER_EASE_HPP