/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see .
*/
#include "render/passes/shadow-map-pass.hpp"
#include "resources/resource-manager.hpp"
#include "gl/rasterizer.hpp"
#include "gl/framebuffer.hpp"
#include "gl/shader-program.hpp"
#include "gl/shader-input.hpp"
#include "gl/drawing-mode.hpp"
#include "render/context.hpp"
#include "render/material.hpp"
#include "render/material-flags.hpp"
#include "scene/camera.hpp"
#include "scene/light.hpp"
#include "geom/view-frustum.hpp"
#include "geom/aabb.hpp"
#include "config.hpp"
#include "math/vector.hpp"
#include "math/matrix.hpp"
#include "math/quaternion-operators.hpp"
#include "math/projection.hpp"
#include
#include
namespace render {
static bool operation_compare(const render::operation& a, const render::operation& b);
void shadow_map_pass::distribute_frustum_splits(float* split_distances, std::size_t split_count, float split_scheme, float near, float far)
{
// Calculate split distances
for (std::size_t i = 0; i < split_count; ++i)
{
float part = static_cast(i + 1) / static_cast(split_count + 1);
// Calculate uniform split distance
float uniform_split_distance = near + (far - near) * part;
// Calculate logarithmic split distance
float log_split_distance = near * std::pow(far / near, part);
// Interpolate between uniform and logarithmic split distances
split_distances[i] = log_split_distance * split_scheme + uniform_split_distance * (1.0f - split_scheme);
}
}
shadow_map_pass::shadow_map_pass(gl::rasterizer* rasterizer, const gl::framebuffer* framebuffer, resource_manager* resource_manager):
pass(rasterizer, framebuffer),
split_scheme_weight(0.5f),
light(nullptr)
{
// Load skinned shader program
unskinned_shader_program = resource_manager->load("depth-unskinned.glsl");
unskinned_model_view_projection_input = unskinned_shader_program->get_input("model_view_projection");
// Load unskinned shader program
skinned_shader_program = resource_manager->load("depth-skinned.glsl");
skinned_model_view_projection_input = skinned_shader_program->get_input("model_view_projection");
// Calculate bias-tile matrices
float4x4 bias_matrix = math::translate(math::matrix4::identity(), float3{0.5f, 0.5f, 0.5f}) * math::scale(math::matrix4::identity(), float3{0.5f, 0.5f, 0.5f});
float4x4 tile_scale = math::scale(math::matrix4::identity(), float3{0.5f, 0.5f, 1.0f});
for (int i = 0; i < 4; ++i)
{
float x = static_cast(i % 2) * 0.5f;
float y = static_cast(i / 2) * 0.5f;
float4x4 tile_matrix = math::translate(math::matrix4::identity(), float3{x, y, 0.0f}) * tile_scale;
bias_tile_matrices[i] = tile_matrix * bias_matrix;
}
}
shadow_map_pass::~shadow_map_pass()
{}
void shadow_map_pass::render(const render::context& ctx, render::queue& queue) const
{
// Abort if no directional light was set
if (!light)
{
return;
}
rasterizer->use_framebuffer(*framebuffer);
// Disable blending
glDisable(GL_BLEND);
// Enable depth testing
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glDepthMask(GL_TRUE);
// Disable face culling
glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);
// For half-z buffer
//glDepthRange(-1.0f, 1.0f);
// Get camera
const scene::camera& camera = *ctx.camera;
// Calculate distances to the depth clipping planes of each frustum split
float clip_near = camera.get_clip_near_tween().interpolate(ctx.alpha);
float clip_far = camera.get_clip_far_tween().interpolate(ctx.alpha);
split_distances[0] = clip_near;
split_distances[4] = clip_far;
distribute_frustum_splits(&split_distances[1], 3, split_scheme_weight, clip_near, clip_far);
// Calculate viewports for each shadow map
const int shadow_map_resolution = std::get<0>(framebuffer->get_dimensions()) / 2;
float4 shadow_map_viewports[4];
for (int i = 0; i < 4; ++i)
{
int x = i % 2;
int y = i / 2;
float4& viewport = shadow_map_viewports[i];
viewport[0] = static_cast(x * shadow_map_resolution);
viewport[1] = static_cast(y * shadow_map_resolution);
viewport[2] = static_cast(shadow_map_resolution);
viewport[3] = static_cast(shadow_map_resolution);
}
// Calculate a view-projection matrix from the directional light's transform
math::transform light_transform = light->get_transform_tween().interpolate(ctx.alpha);
float3 forward = light_transform.rotation * config::global_forward;
float3 up = light_transform.rotation * config::global_up;
float4x4 light_view = math::look_at(light_transform.translation, light_transform.translation + forward, up);
float4x4 light_projection = math::ortho_half_z(-1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f);
float4x4 light_view_projection = light_projection * light_view;
// Get the camera's view matrix
float4x4 camera_view = camera.get_view_tween().interpolate(ctx.alpha);
float4x4 crop_matrix;
float4x4 cropped_view_projection;
float4x4 model_view_projection;
// Sort render queue
queue.sort(operation_compare);
gl::shader_program* active_shader_program = nullptr;
for (int i = 0; i < 4; ++i)
{
// Set viewport for this shadow map
const float4& viewport = shadow_map_viewports[i];
rasterizer->set_viewport(viewport[0], viewport[1], viewport[2], viewport[3]);
// Calculate projection matrix for view camera subfrustum
const float subfrustum_near = split_distances[i];
const float subfrustum_far = split_distances[i + 1];
float4x4 subfrustum_projection = math::perspective_half_z(camera.get_fov(), camera.get_aspect_ratio(), subfrustum_near, subfrustum_far);
// Calculate view camera subfrustum
geom::view_frustum subfrustum(subfrustum_projection * camera_view);
// Create AABB containing the view camera subfrustum corners
const std::array& subfrustum_corners = subfrustum.get_corners();
geom::aabb subfrustum_aabb = {subfrustum_corners[0], subfrustum_corners[0]};
for (int j = 1; j < 8; ++j)
{
for (int k = 0; k < 3; ++k)
{
subfrustum_aabb.min_point[k] = std::min(subfrustum_aabb.min_point[k], subfrustum_corners[j][k]);
subfrustum_aabb.max_point[k] = std::max(subfrustum_aabb.max_point[k], subfrustum_corners[j][k]);
}
}
// Transform subfrustum AABB into the light clip space
geom::aabb cropping_bounds = geom::aabb::transform(subfrustum_aabb, light_view_projection);
// Calculate scale
float3 scale;
scale.x() = 2.0f / (cropping_bounds.max_point.x() - cropping_bounds.min_point.x());
scale.y() = 2.0f / (cropping_bounds.max_point.y() - cropping_bounds.min_point.y());
scale.z() = 1.0f / (cropping_bounds.max_point.z() - cropping_bounds.min_point.z());
//scale.z() = 2.0f / (cropping_bounds.max_point.z() - cropping_bounds.min_point.z());
// Quantize scale
float scale_quantizer = 64.0f;
scale.x() = 1.0f / std::ceil(1.0f / scale.x() * scale_quantizer) * scale_quantizer;
scale.y() = 1.0f / std::ceil(1.0f / scale.y() * scale_quantizer) * scale_quantizer;
// Calculate offset
float3 offset;
offset.x() = (cropping_bounds.max_point.x() + cropping_bounds.min_point.x()) * scale.x() * -0.5f;
offset.y() = (cropping_bounds.max_point.y() + cropping_bounds.min_point.y()) * scale.y() * -0.5f;
offset.z() = -cropping_bounds.min_point.z() * scale.z();
//offset.z() = (cropping_bounds.max_point.z() + cropping_bounds.min_point.z()) * scale.z() * -0.5f;
// Quantize offset
float half_shadow_map_resolution = static_cast(shadow_map_resolution) * 0.5f;
offset.x() = std::ceil(offset.x() * half_shadow_map_resolution) / half_shadow_map_resolution;
offset.y() = std::ceil(offset.y() * half_shadow_map_resolution) / half_shadow_map_resolution;
// Crop the light view-projection matrix
crop_matrix = math::translate(math::matrix4::identity(), offset) * math::scale(math::matrix4::identity(), scale);
cropped_view_projection = crop_matrix * light_view_projection;
// Calculate shadow matrix
shadow_matrices[i] = bias_tile_matrices[i] * cropped_view_projection;
for (const render::operation& operation: queue)
{
// Skip materials which don't cast shadows
const render::material* material = operation.material;
if (material && (material->get_flags() & MATERIAL_FLAG_NOT_SHADOW_CASTER))
{
continue;
}
// Switch shader programs if necessary
gl::shader_program* shader_program = (operation.bone_count) ? skinned_shader_program : unskinned_shader_program;
if (active_shader_program != shader_program)
{
active_shader_program = shader_program;
rasterizer->use_program(*active_shader_program);
}
// Calculate model-view-projection matrix
model_view_projection = cropped_view_projection * operation.transform;
// Upload operation-dependent parameters to shader program
if (active_shader_program == unskinned_shader_program)
{
unskinned_model_view_projection_input->upload(model_view_projection);
}
else if (active_shader_program == skinned_shader_program)
{
skinned_model_view_projection_input->upload(model_view_projection);
}
// Draw geometry
rasterizer->draw_arrays(*operation.vertex_array, operation.drawing_mode, operation.start_index, operation.index_count);
}
}
}
void shadow_map_pass::set_split_scheme_weight(float weight)
{
split_scheme_weight = weight;
}
void shadow_map_pass::set_light(const scene::directional_light* light)
{
this->light = light;
}
bool operation_compare(const render::operation& a, const render::operation& b)
{
// Determine transparency
bool skinned_a = (a.bone_count);
bool skinned_b = (b.bone_count);
if (skinned_a)
{
if (skinned_b)
{
// A and B are both skinned, sort by VAO
return (a.vertex_array < b.vertex_array);
}
else
{
// A is skinned, B is unskinned. Render B first
return false;
}
}
else
{
if (skinned_b)
{
// A is unskinned, B is skinned. Render A first
return true;
}
else
{
// A and B are both unskinned, sort by VAO
return (a.vertex_array < b.vertex_array);
}
}
}
} // namespace render