/* * Copyright (C) 2021 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #include "ecs/systems/astronomy-system.hpp" #include "astro/coordinates.hpp" #include "astro/apparent-size.hpp" #include "ecs/components/celestial-body-component.hpp" #include "ecs/components/transform-component.hpp" #include "renderer/passes/sky-pass.hpp" #include "astro/blackbody.hpp" #include namespace ecs { static constexpr double seconds_per_day = 24.0 * 60.0 * 60.0; astronomy_system::astronomy_system(ecs::registry& registry): entity_system(registry), universal_time(0.0), days_per_timestep(1.0 / seconds_per_day), observer_location{0.0, 0.0, 0.0}, lst(0.0), obliquity(0.0), axial_rotation(0.0), axial_rotation_at_epoch(0.0), axial_rotation_speed(0.0), sky_pass(nullptr), sun_light(nullptr) {} void astronomy_system::update(double t, double dt) { // Add scaled timestep to current time set_universal_time(universal_time + dt * days_per_timestep); // Update horizontal (topocentric) positions of intrasolar celestial bodies registry.view().each( [&](ecs::entity entity, auto& body, auto& transform) { // Transform orbital position from ecliptic space to horizontal space double3 horizontal = ecliptic_to_horizontal * body.orbital_state.r; // Subtract observer's radial distance (planet radius + observer's altitude) horizontal.z -= observer_location[0]; // Convert rectangular horizontal coordinates to spherical double3 spherical = astro::rectangular_to_spherical(horizontal); spherical.z -= math::pi; // Find angular radius double angular_radius = astro::find_angular_radius(body.radius, spherical.x); // Transform into local right-handed coordinates double3 translation = astro::horizontal_to_right_handed * horizontal; double3x3 rotation = astro::horizontal_to_right_handed * ecliptic_to_horizontal; // Set local transform of transform component transform.local.translation = math::type_cast(translation); transform.local.rotation = math::type_cast(math::quaternion_cast(rotation)); transform.local.scale = math::type_cast(double3{body.radius, body.radius, body.radius}); if (sun_light != nullptr) { math::quaternion sun_azimuth_rotation = math::angle_axis(static_cast(spherical.z), float3{0, 1, 0}); math::quaternion sun_elevation_rotation = math::angle_axis(static_cast(spherical.y), float3{-1, 0, 0}); math::quaternion sun_az_el_rotation = math::normalize(sun_azimuth_rotation * sun_elevation_rotation); //sun_az_el_rotation = math::angle_axis((float)universal_time * math::two_pi, float3{1, 0, 0}); // //sun_light->look_at({0, 0, 0}, {0, -1, 0}, {0, 0, 1}); // Set sun color float correlated_temperature = 3000.0f + std::sin(spherical.y) * 5000.0f; float3 correlated_color = math::type_cast(astro::blackbody(correlated_temperature)); sun_light->set_color(correlated_color); // Set sun intensity (in lux) float intensity = std::max(0.0, std::sin(spherical.y) * 108000.0f); sun_light->set_intensity(intensity); sun_light->set_translation({0, 500, 0}); //sun_light->set_rotation(math::look_rotation(math::normalize(transform.local.translation), {0, 1, 0})); sun_light->set_rotation(sun_az_el_rotation); //sun_light->set_rotation(sun_elevation_rotation); if (this->sky_pass) { this->sky_pass->set_sun_coordinates(sun_az_el_rotation * float3{0, 0, -1}, {static_cast(spherical.z), static_cast(spherical.y)}); } } }); if (sky_pass) { // Calculate local time double time_correction = observer_location[2] / (math::two_pi / 24.0); double local_jd = universal_time + time_correction / 24.0 - 0.5; double local_time = (local_jd - std::floor(local_jd)) * 24.0; sky_pass->set_time_of_day(local_time); } } void astronomy_system::set_universal_time(double time) { universal_time = time; update_axial_rotation(); } void astronomy_system::set_time_scale(double scale) { days_per_timestep = scale / seconds_per_day; } void astronomy_system::set_observer_location(const double3& location) { observer_location = location; update_sidereal_time(); } void astronomy_system::set_obliquity(double angle) { obliquity = angle; update_ecliptic_to_horizontal(); } void astronomy_system::set_axial_rotation_speed(double speed) { axial_rotation_speed = speed; update_axial_rotation(); } void astronomy_system::set_axial_rotation_at_epoch(double angle) { axial_rotation_at_epoch = angle; update_axial_rotation(); } void astronomy_system::set_sky_pass(::sky_pass* pass) { sky_pass = pass; } void astronomy_system::set_sun_light(scene::directional_light* light) { sun_light = light; } void astronomy_system::update_axial_rotation() { axial_rotation = math::wrap_radians(axial_rotation_at_epoch + universal_time * axial_rotation_speed); update_sidereal_time(); } void astronomy_system::update_sidereal_time() { lst = math::wrap_radians(axial_rotation + observer_location[2]); update_ecliptic_to_horizontal(); } void astronomy_system::update_ecliptic_to_horizontal() { ecliptic_to_horizontal = astro::ecliptic_to_horizontal(obliquity, observer_location[1], lst); } } // namespace ecs