/* * Copyright (C) 2021 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #include "painting-system.hpp" #include "ecs/components/transform-component.hpp" #include "ecs/components/brush-component.hpp" #include "ecs/components/tool-component.hpp" #include "event/event-dispatcher.hpp" #include "resources/resource-manager.hpp" #include "math/math.hpp" #include "renderer/material.hpp" #include "renderer/model.hpp" #include "utility/fundamental-types.hpp" #include "ecs/commands.hpp" #include "ecs/components/collision-component.hpp" #include "ecs/components/transform-component.hpp" #include "gl/vertex-buffer.hpp" #include "gl/vertex-attribute-type.hpp" #include "renderer/vertex-attributes.hpp" #include "geom/mesh-functions.hpp" #include namespace ecs { painting_system::painting_system(ecs::registry& registry, ::event_dispatcher* event_dispatcher, ::resource_manager* resource_manager): entity_system(registry), event_dispatcher(event_dispatcher), resource_manager(resource_manager), scene_collection(nullptr), painting(false) { event_dispatcher->subscribe(this); event_dispatcher->subscribe(this); max_miter_angle = math::radians(135.0f); decal_offset = 0.01f; stroke_width = 1.5f; min_stroke_length = 1.0f; min_stroke_length_squared = min_stroke_length * min_stroke_length; max_stroke_segments = 4096; current_stroke_segment = 0; vertex_size = 13; vertex_stride = sizeof(float) * vertex_size; vertex_count = max_stroke_segments * 6; // Create stroke model stroke_model = new model(); stroke_model_group = stroke_model->add_group(); stroke_model_group->set_material(resource_manager->load("brushstroke.mtl")); // Setup stroke vbo and vao stroke_vbo = stroke_model->get_vertex_buffer(); stroke_vbo->repurpose(sizeof(float) * vertex_size * vertex_count, nullptr, gl::buffer_usage::dynamic_draw); stroke_model->get_vertex_array()->bind_attribute(VERTEX_POSITION_LOCATION, *stroke_vbo, 4, gl::vertex_attribute_type::float_32, vertex_stride, 0); stroke_model->get_vertex_array()->bind_attribute(VERTEX_NORMAL_LOCATION, *stroke_vbo, 3, gl::vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 4); stroke_model->get_vertex_array()->bind_attribute(VERTEX_TEXCOORD_LOCATION, *stroke_vbo, 2, gl::vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 7); stroke_model->get_vertex_array()->bind_attribute(VERTEX_TANGENT_LOCATION, *stroke_vbo, 4, gl::vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 9); // Create stroke model instance stroke_model_instance = new scene::model_instance(); stroke_model_instance->set_model(stroke_model); stroke_model_instance->update_tweens(); stroke_bounds_min.x = std::numeric_limits::infinity(); stroke_bounds_min.y = std::numeric_limits::infinity(); stroke_bounds_min.z = std::numeric_limits::infinity(); stroke_bounds_max.x = -std::numeric_limits::infinity(); stroke_bounds_max.y = -std::numeric_limits::infinity(); stroke_bounds_max.z = -std::numeric_limits::infinity(); midstroke = false; } painting_system::~painting_system() { event_dispatcher->unsubscribe(this); event_dispatcher->unsubscribe(this); } void painting_system::update(double t, double dt) { if (painting) { const tool_component& tool = registry.get(brush_entity); auto cast_result = cast_ray(tool.cursor); if (cast_result.has_value()) { stroke_end = std::get<0>(cast_result.value()); float3 surface_normal = std::get<1>(cast_result.value()); float3 segment_difference = stroke_end - stroke_start; float segment_length_squared = math::dot(segment_difference, segment_difference); if (segment_length_squared >= min_stroke_length_squared) { float segment_length = std::sqrt(segment_length_squared); float3 segment_forward = segment_difference / segment_length; float3 segment_right = math::normalize(math::cross(segment_forward, surface_normal)); float3 segment_up = math::cross(segment_right, segment_forward); float angle = std::acos(math::dot(segment_forward, float3{0, 0, -1})); float3 cross = math::cross(segment_forward, float3{0, 0, -1}); if (math::dot(surface_normal, cross) < 0.0f) angle = -angle; math::quaternion tangent_rotation = math::normalize(math::angle_axis(-angle, surface_normal)); float3 p1 = stroke_start; float3 p2 = stroke_end; // Find miter float3 tangent = math::normalize(math::normalize(p2 - p1) + math::normalize(p1 - p0)); float2 miter = float2{-tangent.z, tangent.x}; float2 normal = float2{segment_right.x, segment_right.z}; float miter_length = stroke_width / math::dot(miter, normal); float3 a = p0a; float3 b = p0b; float3 c = p1 - segment_right * stroke_width * 0.5f + segment_up * decal_offset; float3 d = p1 + segment_right * stroke_width * 0.5f + segment_up * decal_offset; float3 e = p2 - segment_right * stroke_width * 0.5f + segment_up * decal_offset; float3 f = p2 + segment_right * stroke_width * 0.5f + segment_up * decal_offset; // Adjust c and d bool mitered = false; if (midstroke) { float angle = std::acos(math::dot(math::normalize(p2 - p1), math::normalize(p1 - p0))); if (angle < max_miter_angle) { mitered = true; c = p1 - float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f + segment_up * decal_offset; d = p1 + float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f + segment_up * decal_offset; } } const float3 positions[] = { a, b, c, c, b, d, c, d, e, e, d, f }; const float w = static_cast(t); float2 texcoords[] = { {0, 0}, {1, 0}, {0, 1}, {0, 1}, {1, 0}, {1, 1}, {0, 0}, {1, 0}, {0, 1}, {0, 1}, {1, 0}, {1, 1}, }; float3 tangent_positions[] = { {0, 0, 0}, {1, 0, 0}, {0, 0, 1}, {0, 0, 1}, {1, 0, 0}, {1, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 0, 1}, {0, 0, 1}, {1, 0, 0}, {1, 0, 1} }; /// @TODO: smooth normals in middle of segment float4 tangents[12]; for (int i = 0; i < 4; ++i) { const float3& a = tangent_positions[i * 3]; const float3& b = tangent_positions[i * 3 + 1]; const float3& c = tangent_positions[i * 3 + 2]; const float2& uva = texcoords[i * 3]; const float2& uvb = texcoords[i * 3 + 1]; const float2& uvc = texcoords[i * 3 + 2]; float3 ba = b - a; float3 ca = c - a; float2 uvba = uvb - uva; float2 uvca = uvc - uva; float f = 1.0f / (uvba.x * uvca.y - uvca.x * uvba.y); float3 tangent = math::normalize((ba * uvca.y - ca * uvba.y) * f); float3 bitangent = math::normalize((ba * -uvca.x + ca * uvba.x) * f); // Rotate tangent and bitangent according to segment rotation tangent = math::normalize(tangent_rotation * tangent); bitangent = math::normalize(tangent_rotation * bitangent); // Calculate sign of bitangent float bitangent_sign = (math::dot(math::cross(surface_normal, tangent), bitangent) < 0.0f) ? -1.0f : 1.0f; tangents[i * 3] = {tangent.x, tangent.y, tangent.z, bitangent_sign}; tangents[i * 3 + 1] = {tangent.x, tangent.y, tangent.z, bitangent_sign}; tangents[i * 3 + 2] = {tangent.x, tangent.y, tangent.z, bitangent_sign}; } float vertex_data[13 * 12]; float* v = &vertex_data[0]; for (int i = 0; i < 12; ++i) { *(v++) = positions[i].x; *(v++) = positions[i].y; *(v++) = positions[i].z; *(v++) = w; *(v++) = surface_normal.x; *(v++) = surface_normal.y; *(v++) = surface_normal.z; *(v++) = texcoords[i].x; *(v++) = texcoords[i].y; *(v++) = tangents[i].x; *(v++) = tangents[i].y; *(v++) = tangents[i].z; *(v++) = tangents[i].w; } std::size_t segment_size = sizeof(float) * vertex_size * 6; if (mitered) { stroke_vbo->update((current_stroke_segment - 1) * segment_size, segment_size * 2, &vertex_data[0]); } else { stroke_vbo->update(current_stroke_segment * segment_size, segment_size, &vertex_data[vertex_size * 6]); } ++current_stroke_segment; stroke_model_group->set_index_count(current_stroke_segment * 6); // Update stroke bounds stroke_bounds_min.x = std::min(stroke_bounds_min.x, std::min(c.x, std::min(d.x, std::min(e.x, f.x)))); stroke_bounds_min.y = std::min(stroke_bounds_min.y, std::min(c.y, std::min(d.y, std::min(e.y, f.y)))); stroke_bounds_min.z = std::min(stroke_bounds_min.z, std::min(c.z, std::min(d.z, std::min(e.z, f.z)))); stroke_bounds_max.x = std::max(stroke_bounds_max.x, std::max(c.x, std::max(d.x, std::max(e.x, f.x)))); stroke_bounds_max.y = std::max(stroke_bounds_max.y, std::max(c.y, std::max(d.y, std::max(e.y, f.y)))); stroke_bounds_max.z = std::max(stroke_bounds_max.z, std::max(c.z, std::max(d.z, std::max(e.z, f.z)))); stroke_model->set_bounds(geom::aabb{stroke_bounds_min, stroke_bounds_max}); stroke_model_instance->update_bounds(); p0 = stroke_start; p0a = c; p0b = d; stroke_start = stroke_end; midstroke = true; } } } } void painting_system::set_scene(scene::collection* collection) { this->scene_collection = collection; scene_collection->add_object(stroke_model_instance); } void painting_system::handle_event(const tool_pressed_event& event) { if (registry.has(event.entity)) { auto cast_result = cast_ray(event.position); if (cast_result.has_value()) { brush_entity = event.entity; painting = true; stroke_start = std::get<0>(cast_result.value()); stroke_end = stroke_start; p0 = stroke_start; p0a = p0; p0b = p0; midstroke = false; } } } void painting_system::handle_event(const tool_released_event& event) { if (registry.has(event.entity)) { auto cast_result = cast_ray(command::get_world_transform(registry, event.entity).translation); if (cast_result.has_value()) { stroke_end = std::get<0>(cast_result.value()); } brush_entity = entt::null; painting = false; } } std::optional> painting_system::cast_ray(const float3& position) const { std::optional> result; float3 intersection; float3 surface_normal; geom::mesh::face* face = nullptr; geom::ray untransformed_ray = {position + float3{0.0f, 10000.0f, 0.0f}, {0, -1, 0}}; float min_distance = std::numeric_limits::infinity(); registry.view().each( [&](ecs::entity entity, auto& collision_transform, auto& collision) { // Transform ray into local space of collision component math::transform inverse_transform = math::inverse(collision_transform.local); float3 origin = inverse_transform * untransformed_ray.origin; float3 direction = math::normalize(math::conjugate(collision_transform.local.rotation) * untransformed_ray.direction); geom::ray transformed_ray = {origin, direction}; // Broad phase AABB test auto aabb_result = geom::ray_aabb_intersection(transformed_ray, collision.bounds); if (!std::get<0>(aabb_result)) { return; } // Narrow phase mesh test auto mesh_result = collision.mesh_accelerator.query_nearest(transformed_ray); if (mesh_result) { if (mesh_result->t < min_distance) { min_distance = mesh_result->t; intersection = untransformed_ray.extrapolate(min_distance); face = mesh_result->face; } } }); if (face != nullptr) { surface_normal = calculate_face_normal(*face); result = std::make_tuple(intersection, surface_normal); } return result; } } // namespace ecs