/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see .
*/
#include "intersection.hpp"
#include
std::tuple ray_plane_intersection(const ray& ray, const plane& plane)
{
float denom = math::dot(ray.direction, plane.normal);
if (denom != 0.0f)
{
float t = -(math::dot(ray.origin, plane.normal) + plane.distance) / denom;
if (t >= 0.0f)
{
return std::make_tuple(true, t);
}
}
return std::make_tuple(false, std::numeric_limits::infinity());
}
std::tuple ray_triangle_intersection(const ray& ray, const float3& a, const float3& b, const float3& c)
{
// Find edges
float3 edge10 = b - a;
float3 edge20 = c - a;
// Calculate determinant
float3 pv = math::cross(ray.direction, edge20);
float det = math::dot(edge10, pv);
if (!det)
{
return std::make_tuple(false, std::numeric_limits::infinity(), 0.0f, 0.0f);
}
float inverse_det = 1.0f / det;
// Calculate u
float3 tv = ray.origin - a;
float u = math::dot(tv, pv) * inverse_det;
if (u < 0.0f || u > 1.0f)
{
return std::make_tuple(false, std::numeric_limits::infinity(), 0.0f, 0.0f);
}
// Calculate v
float3 qv = math::cross(tv, edge10);
float v = math::dot(ray.direction, qv) * inverse_det;
if (v < 0.0f || u + v > 1.0f)
{
return std::make_tuple(false, std::numeric_limits::infinity(), 0.0f, 0.0f);
}
// Calculate t
float t = math::dot(edge20, qv) * inverse_det;
if (t > 0.0f)
{
return std::make_tuple(true, t, u, v);
}
return std::make_tuple(false, std::numeric_limits::infinity(), 0.0f, 0.0f);
}
std::tuple ray_aabb_intersection(const ray& ray, const aabb& aabb)
{
float t0 = -std::numeric_limits::infinity();
float t1 = std::numeric_limits::infinity();
for (std::size_t i = 0; i < 3; ++i)
{
if (ray.direction[i] == 0.0f)
{
if (ray.origin[i] < aabb.min_point[i] || ray.origin[i] > aabb.max_point[i])
{
return std::make_tuple(false, std::numeric_limits::infinity(), std::numeric_limits::infinity());
}
}
else
{
float tmin = (aabb.min_point[i] - ray.origin[i]) / ray.direction[i];
float tmax = (aabb.max_point[i] - ray.origin[i]) / ray.direction[i];
t0 = std::max(t0, std::min(tmin, tmax));
t1 = std::min(t1, std::max(tmin, tmax));
}
}
if (t0 > t1 || t1 < 0.0f)
{
return std::make_tuple(false, std::numeric_limits::infinity(), std::numeric_limits::infinity());
}
return std::make_tuple(true, t0, t1);
}
std::tuple ray_mesh_intersection(const ray& ray, const mesh& mesh)
{
const std::vector& triangles = mesh.get_faces();
bool intersection = false;
float t0 = std::numeric_limits::infinity();
float t1 = -std::numeric_limits::infinity();
std::size_t index0 = triangles.size();
std::size_t index1 = triangles.size();
for (std::size_t i = 0; i < triangles.size(); ++i)
{
const mesh::face* triangle = triangles[i];
const float3& a = reinterpret_cast(triangle->edge->vertex->position);
const float3& b = reinterpret_cast(triangle->edge->next->vertex->position);
const float3& c = reinterpret_cast(triangle->edge->previous->vertex->position);
auto result = ray_triangle_intersection(ray, a, b, c);
if (std::get<0>(result))
{
intersection = true;
float t = std::get<1>(result);
if (t < t0)
{
t0 = t;
index0 = i;
}
if (t > t1)
{
t1 = t;
index1 = i;
}
}
}
return std::make_tuple(intersection, t0, t1, index0, index1);
}
bool aabb_aabb_intersection(const aabb& a, const aabb& b)
{
if (a.max_point.x < b.min_point.x || a.min_point.x > b.max_point.x)
return false;
if (a.max_point.y < b.min_point.y || a.min_point.y > b.max_point.y)
return false;
if (a.max_point.z < b.min_point.z || a.min_point.z > b.max_point.z)
return false;
return true;
}
bool aabb_sphere_intersection(const aabb& aabb, const float3& center, float radius)
{
float distance_squared = 0.0f;
for (int i = 0; i < 3; ++i)
{
float v = center[i];
if (v < aabb.min_point[i])
distance_squared += (aabb.min_point[i] - v) * (aabb.min_point[i] - v);
if (v > aabb.max_point[i])
distance_squared += (v - aabb.max_point[i]) * (v - aabb.max_point[i]);
}
return (distance_squared <= (radius * radius));
}