/* * Copyright (C) 2020 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #include "game/systems/weather-system.hpp" #include "scene/directional-light.hpp" #include "scene/ambient-light.hpp" #include "renderer/passes/sky-pass.hpp" #include "renderer/passes/shadow-map-pass.hpp" #include "renderer/passes/material-pass.hpp" #include "utility/gamma.hpp" #include "resources/image.hpp" #include "game/astronomy/celestial-coordinates.hpp" #include #include static constexpr double hours_per_day = 24.0; static constexpr double minutes_per_day = hours_per_day * 60.0; static constexpr double seconds_per_day = minutes_per_day * 60.0; /** * * @param year Gregorian year * @param month Month (1 = January, 12 = December) * @param day Day (1-31) * @param time Universal time in decimal hours. */ static double julian_day(int year, int month, int day, double time) { if (month < 3) { month += 12; year -= 1; } double y = static_cast(year); double m = static_cast(month); double d = static_cast(day); return std::floor(365.25 * y) + std::floor(30.6001 * (m + 1.0)) - 15.0 + 1720996.5 + d + time; } /** * Calculates the ecliptic rectangular geocentric coordinates of the sun, with distance in AU. */ double3 calculate_sun_ecliptic(double jd) { const double t = (jd - 2451545.0) / 36525.0; const double m = 6.24 + 628.302 * t; const double longitude = 4.895048 + 628.331951 * t + (0.033417 - 0.000084 * t) * std::sin(m) + 0.000351 * std::sin(m * 2.0); const double latitude = 0.0; const double distance = 1.000140 - (0.016708 - 0.000042 * t) * std::cos(m) - 0.000141 * std::cos(m * 2.0); double3 ecliptic; ecliptic.x = distance * std::cos(longitude) * std::cos(latitude); ecliptic.y = distance * std::sin(longitude) * std::cos(latitude); ecliptic.z = distance * std::sin(latitude); return ecliptic; } /** * Calculates the ecliptic rectangular geocentric coordinates of the moon, with distance in Earth radii. */ double3 calculate_moon_ecliptic(double jd) { const double t = (jd - 2451545.0) / 36525.0; const double l1 = 3.8104 + 8399.7091 * t; const double m1 = 2.3554 + 8328.6911 * t; const double m = 6.2300 + 628.3019 * t; const double d = 5.1985 + 7771.3772 * t; const double d2 = d * 2.0; const double f = 1.6280 + 8433.4663 * t; const double longitude = l1 + 0.1098 * std::sin(m1) + 0.0222 * std::sin(d2 - m1) + 0.0115 * std::sin(d2) + 0.0037 * std::sin(m1 * 2.0) - 0.0032 * std::sin(m) - 0.0020 * std::sin(d2) + 0.0010 * std::sin(d2 - m1 * 2.0) + 0.0010 * std::sin(d2 - m - m1) + 0.0009 * std::sin(d2 + m1) + 0.0008 * std::sin(d2 - m) + 0.0007 * std::sin(m1 - m) - 0.0006 * std::sin(d) - 0.0005 * std::sin(m + m1); const double latitude = 0.0895 * sin(f) + 0.0049 * std::sin(m1 + f) + 0.0048 * std::sin(m1 - f) + 0.0030 * std::sin(d2 - f) + 0.0010 * std::sin(d2 + f - m1) + 0.0008 * std::sin(d2 - f - m1) + 0.0006 * std::sin(d2 + f); const double r = 1.0 / (0.016593 + 0.000904 * std::cos(m1) + 0.000166 * std::cos(d2 - m1) + 0.000137 * std::cos(d2) + 0.000049 * std::cos(m1 * 2.0) + 0.000015 * std::cos(d2 + m1) + 0.000009 * std::cos(d2 - m)); double3 ecliptic; ecliptic.x = r * std::cos(longitude) * std::cos(latitude); ecliptic.y = r * std::sin(longitude) * std::cos(latitude); ecliptic.z = r * std::sin(latitude); return ecliptic; } double3x3 find_moon_ecliptic_rotation(double jd) { const double t = (jd - 2451545.0) / 36525.0; const double l1 = 3.8104 + 8399.7091 * t; const double f = 1.6280 + 8433.4663 * t; const double az0 = f + math::pi; const double ax = 0.026920; const double az1 = l1 - f; double3x3 rz0 = { cos(az0), -sin(az0), 0, sin(az0), cos(az0), 0, 0, 0, 1 }; double3x3 rx = { 1, 0, 0, 0, cos(ax), -sin(ax), 0, sin(ax), cos(ax) }; double3x3 rz1 = { cos(az1), -sin(az1), 0, sin(az1), cos(az1), 0, 0, 0, 1 }; return rz0 * rx * rz1; } /// @see http://www.stjarnhimlen.se/comp/ppcomp.html /// @see http://www.geoastro.de/elevazmoon/basics/index.htm void ecliptic_to_equatorial(double longitude, double latitude, double ecl, double* right_ascension, double* declination) { double eclip_x = std::cos(longitude) * std::cos(latitude); double eclip_y = std::sin(longitude) * std::cos(latitude); double eclip_z = std::sin(latitude); double equat_x = eclip_x; double equat_y = eclip_y * std::cos(ecl) - eclip_z * std::sin(ecl); double equat_z = eclip_y * std::sin(ecl) + eclip_z * std::cos(ecl); *right_ascension = std::atan2(equat_y, equat_x); *declination = std::atan2(equat_z, sqrt(equat_x * equat_x + equat_y * equat_y)); } /// @see http://www.stjarnhimlen.se/comp/ppcomp.html /// @see http://www.geoastro.de/elevazmoon/basics/index.htm void equatorial_to_horizontal(double right_ascension, double declination, double lmst, double latitude, double* azimuth, double* elevation) { double hour_angle = lmst - right_ascension; double x = std::cos(hour_angle) * std::cos(declination); double y = std::sin(hour_angle) * std::cos(declination); double z = std::sin(declination); double horiz_x = x * std::cos(math::half_pi - latitude) - z * std::sin(math::half_pi - latitude); double horiz_y = y; double horiz_z = x * std::sin(math::half_pi - latitude) + z * std::cos(math::half_pi - latitude); *azimuth = math::wrap_radians(std::atan2(horiz_y, horiz_x) + math::pi); *elevation = math::wrap_radians(std::atan2(horiz_z, std::sqrt(horiz_x * horiz_x + horiz_y * horiz_y))); } double3x3 horizontal_to_right_handed() { return double3x3 { 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, -1.0, 0.0 }; } /** * Calculates the Greenwich mean sidereal time (GMST) from a Julian day. * * @param jd Julian day. * @return GMST, in radians. */ static double jd_to_gmst(double jd) { return math::wrap_radians(4.894961212 + 6.300388098 * (jd - 2451545.0)); } weather_system::weather_system(entt::registry& registry): entity_system(registry), ambient_light(nullptr), sun_light(nullptr), moon_light(nullptr), shadow_light(nullptr), sky_pass(nullptr), shadow_map_pass(nullptr), material_pass(nullptr), time_scale(1.0f), sun_direction{0.0f, -1.0f, 0.0f}, location{0.0f, 0.0f, 0.0f}, jd(0.0) {} void weather_system::update(double t, double dt) { jd += (dt * time_scale) / seconds_per_day; const float latitude = location[0]; const float longitude = location[1]; // Calculate local mean sidereal time (LMST) double time_correction = longitude / (math::two_pi / 24.0); double local_jd = jd + time_correction / 24.0 - 0.5; double local_time = (local_jd - std::floor(local_jd)) * 24.0; double hour = local_time; double gmst = jd_to_gmst(jd); double lmst = gmst + longitude; // Obliquity of the ecliptic double ecl = math::radians(23.4393 - 3.563e-7 * (jd - 2451545.0)); // Solar distance in AU //double sr = ... // Apparent radius in degrees //double sradius = 0.2666 / sr; double3x3 ecliptic_to_horizontal = ast::ecliptic_to_horizontal(ecl, latitude, lmst); double3 sun_ecliptic = calculate_sun_ecliptic(jd); double3 sun_horizontal = ecliptic_to_horizontal * sun_ecliptic; double3 sun_spherical = ast::rectangular_to_spherical(sun_horizontal); double3 sun_positiond = horizontal_to_right_handed() * sun_horizontal; float2 sun_az_el = {static_cast(sun_spherical.z) - math::pi, static_cast(sun_spherical.y)}; float3 sun_position = math::normalize(float3{static_cast(sun_positiond.x), static_cast(sun_positiond.y), static_cast(sun_positiond.z)}); double3 moon_ecliptic = calculate_moon_ecliptic(jd); double3 moon_horizontal = ecliptic_to_horizontal * moon_ecliptic; moon_horizontal.z -= 1.0; // Subtract one earth radius, for position of observer double3 moon_spherical = ast::rectangular_to_spherical(moon_horizontal); double3 moon_positiond = horizontal_to_right_handed() * moon_horizontal; float2 moon_az_el = {static_cast(moon_spherical.z) - math::pi, static_cast(moon_spherical.y)}; float3 moon_position = math::normalize(float3{static_cast(moon_positiond.x), static_cast(moon_positiond.y), static_cast(moon_positiond.z)}); //std::cout << "new moon: " << math::degrees(moon_az_el[0]) << ", " << math::degrees(moon_az_el[1]) << std::endl; double3x3 moon_rotation_matrix = horizontal_to_right_handed() * ecliptic_to_horizontal; math::quaternion moon_rotationd = math::normalize(math::quaternion_cast(moon_rotation_matrix) * math::angle_axis(math::half_pi, double3{0, 1, 0}) * math::angle_axis(-math::half_pi, double3{0, 0, -1})); math::quaternion moon_rotation = { static_cast(moon_rotationd.w), static_cast(moon_rotationd.x), static_cast(moon_rotationd.y), static_cast(moon_rotationd.z) }; if (sun_light) { math::quaternion sun_azimuth_rotation = math::angle_axis(sun_az_el[0], float3{0, 1, 0}); math::quaternion sun_elevation_rotation = math::angle_axis(sun_az_el[1], float3{-1, 0, 0}); math::quaternion sun_az_el_rotation = math::normalize(sun_azimuth_rotation * sun_elevation_rotation); sun_light->set_rotation(sun_az_el_rotation); } if (moon_light) { math::quaternion moon_azimuth_rotation = math::angle_axis(moon_az_el[0], float3{0, 1, 0}); math::quaternion moon_elevation_rotation = math::angle_axis(moon_az_el[1], float3{-1, 0, 0}); math::quaternion moon_az_el_rotation = math::normalize(moon_azimuth_rotation * moon_elevation_rotation); moon_light->set_rotation(moon_az_el_rotation); } std::size_t hour_index = static_cast(hour); float lerp_factor = hour - std::floor(hour); float sun_gradient_position = static_cast(std::max(0.0, ((sun_az_el[1] + math::half_pi) / math::pi))); float moon_gradient_position = static_cast(std::max(0.0, ((moon_az_el[1] + math::half_pi) / math::pi))); float sky_gradient_position = sun_gradient_position; float ambient_gradient_position = sun_gradient_position; if (sky_pass) { float3 horizon_color = interpolate_gradient(horizon_colors, sun_gradient_position); float3 zenith_color = interpolate_gradient(zenith_colors, sun_gradient_position); float3 sun_color = interpolate_gradient(sun_colors, sun_gradient_position); float3 moon_color = interpolate_gradient(moon_colors, moon_gradient_position); float3 ambient_color = interpolate_gradient(ambient_colors, ambient_gradient_position); sun_light->set_color(sun_color); sun_light->set_intensity(1.0f); moon_light->set_color(moon_color); moon_light->set_intensity(1.0f); ambient_light->set_color(ambient_color); ambient_light->set_intensity(0.5f); sky_pass->set_horizon_color(horizon_color); sky_pass->set_zenith_color(zenith_color); sky_pass->set_time_of_day(static_cast(hour * 60.0 * 60.0)); sky_pass->set_observer_location(location[0], location[1], location[2]); sky_pass->set_sun_coordinates(sun_position, sun_az_el); sky_pass->set_moon_coordinates(moon_position, moon_az_el); sky_pass->set_julian_day(static_cast(jd)); sky_pass->set_moon_rotation(moon_rotation); } shadow_light = sun_light; if (shadow_map_pass) { if (sun_az_el[1] < 0.0f) { shadow_map_pass->set_light(moon_light); } else { shadow_map_pass->set_light(sun_light); } } if (material_pass) { float shadow_strength = interpolate_gradient(shadow_strengths, sun_gradient_position).x; material_pass->set_shadow_strength(shadow_strength); } } void weather_system::set_location(float latitude, float longitude, float altitude) { location = {latitude, longitude, altitude}; } void weather_system::set_ambient_light(::ambient_light* light) { ambient_light = light; } void weather_system::set_sun_light(directional_light* light) { sun_light = light; } void weather_system::set_moon_light(directional_light* light) { moon_light = light; } void weather_system::set_sky_pass(::sky_pass* pass) { sky_pass = pass; if (sky_pass) { sky_pass->set_moon_angular_radius(math::radians(1.0f)); sky_pass->set_sun_angular_radius(math::radians(1.1f)); } } void weather_system::set_shadow_map_pass(::shadow_map_pass* pass) { shadow_map_pass = pass; if (shadow_map_pass) { shadow_map_pass->set_light(shadow_light); } } void weather_system::set_material_pass(::material_pass* pass) { material_pass = pass; } void weather_system::set_time(int year, int month, int day, int hour, int minute, int second, double tc) { double time = ((static_cast(hour) - tc) + ((static_cast(minute) + static_cast(second) / 60.0) / 60.0)) / 24.0; jd = julian_day(year, month, day, time); } void weather_system::set_time_scale(float scale) { time_scale = scale; } void weather_system::set_sky_palette(const ::image* image) { load_palette(&horizon_colors, image, 0); load_palette(&zenith_colors, image, 1); } void weather_system::set_sun_palette(const ::image* image) { load_palette(&sun_colors, image, 0); } void weather_system::set_moon_palette(const ::image* image) { load_palette(&moon_colors, image, 0); } void weather_system::set_ambient_palette(const ::image* image) { load_palette(&ambient_colors, image, 0); } void weather_system::set_shadow_palette(const ::image* image) { load_palette(&shadow_strengths, image, 0); } void weather_system::load_palette(std::vector* palette, const ::image* image, unsigned int row) { unsigned int w = image->get_width(); unsigned int h = image->get_height(); unsigned int c = image->get_channels(); unsigned int y = std::min(row, h - 1); palette->clear(); if (image->is_hdr()) { const float* pixels = static_cast(image->get_pixels()); for (unsigned int x = 0; x < w; ++x) { unsigned int i = y * w * c + x * c; float r = pixels[i]; float g = pixels[i + 1]; float b = pixels[i + 2]; palette->push_back(float3{r, g, b}); } } else { const unsigned char* pixels = static_cast(image->get_pixels()); for (unsigned int x = 0; x < w; ++x) { unsigned int i = y * w * c + x * c; float r = srgb_to_linear(static_cast(pixels[i]) / 255.0f); float g = srgb_to_linear(static_cast(pixels[i + 1]) / 255.0f); float b = srgb_to_linear(static_cast(pixels[i + 2]) / 255.0f); palette->push_back(float3{r, g, b}); } } } float3 weather_system::interpolate_gradient(const std::vector& gradient, float position) { position *= static_cast(gradient.size() - 1); int index0 = static_cast(position) % gradient.size(); int index1 = (index0 + 1) % gradient.size(); return math::lerp(gradient[index0], gradient[index1], position - std::floor(position)); }