/* * Copyright (C) 2021 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #ifndef ANTKEEPER_PHYSICS_ORBIT_FRAME_HPP #define ANTKEEPER_PHYSICS_ORBIT_FRAME_HPP #include "math/se3.hpp" #include namespace physics { namespace orbit { /// Orbital reference frames. namespace frame { /// Perifocal (PQW) frame. namespace pqw { /** * Converts PQW coordinates from Cartesian to spherical. * * @param v PQW Cartesian coordinates. * @return PQW spherical coordinates, in the ISO order of radial distance, inclination (radians), and true anomaly (radians). */ template math::vector3 spherical(const math::vector3& v) { const T xx_yy = v.x * v.x + v.y * v.y; return math::vector3 { std::sqrt(xx_yy + v.z * v.z), std::atan2(v.z, std::sqrt(xx_yy)), std::atan2(v.y, v.x) }; } /** * Constructs spherical PQW coordinates from Keplerian orbital elements. * * @param ec Eccentricity (e). * @param a Semimajor axis (a). * @param ea Eccentric anomaly (E), in radians. * @param b Semiminor axis (b). * @return PQW spherical coordinates, in the ISO order of radial distance, inclination (radians), and true anomaly (radians). */ template math::vector3 spherical(T ec, T a, T ea, T b) { const T x = a * (std::cos(ea) - ec); const T y = b * std::sin(ea); const T d = std::sqrt(x * x + y * y); const T ta = std::atan2(y, x); return math::vector3{d, T(0), ta}; } /** * Constructs spherical PQW coordinates from Keplerian orbital elements. * * @param ec Eccentricity (e). * @param a Semimajor axis (a). * @param ea Eccentric anomaly (E), in radians. * @return PQW spherical coordinates, in the ISO order of radial distance, inclination (radians), and true anomaly (radians). */ template math::vector3 spherical(T ec, T a, T ea) { const T b = a * std::sqrt(T(1) - ec * ec); return spherical(ec, a, ea, b); } /** * Converts PQW coordinates from spherical to Cartesian. * * @param PQW spherical coordinates, in the ISO order of radial distance, inclination (radians), and true anomaly (radians). * @return PQW Cartesian coordinates. */ template math::vector3 cartesian(const math::vector3& v) { const T x = v[0] * std::cos(v[1]); return math::vector3 { x * std::cos(v[2]), x * std::sin(v[2]), v[0] * std::sin(v[1]), }; } /** * Constructs Cartesian PQW coordinates from Keplerian orbital elements. * * @param ec Eccentricity (e). * @param a Semimajor axis (a). * @param ea Eccentric anomaly (E), in radians. * @param b Semiminor axis (b). * @return PQW Cartesian coordinates. */ template math::vector3 cartesian(T ec, T a, T ea, T b) { return cartesian(spherical(ec, a, ea, b)); } /** * Constructs Cartesian PQW coordinates from Keplerian orbital elements. * * @param ec Eccentricity (e). * @param a Semimajor axis (a). * @param ea Eccentric anomaly (E), in radians. * @return PQW Cartesian coordinates. */ template math::vector3 cartesian(T ec, T a, T ea) { return cartesian(spherical(ec, a, ea)); } /** * Constructs an SE(3) transformation from a PQW frame to a BCI frame. * * @param om Right ascension of the ascending node (OMEGA), in radians. * @param in Orbital inclination (i), in radians. * @param w Argument of periapsis (omega), in radians. * @return PQW to BCI transformation. */ template math::transformation::se3 to_bci(T om, T in, T w) { const math::quaternion r = math::normalize ( math::quaternion::rotate_z(om) * math::quaternion::rotate_x(in) * math::quaternion::rotate_z(w) ); return math::transformation::se3{{T(0), T(0), T(0)}, r}; } } // namespace pqw /// Body-centered inertial (BCI) frame. namespace bci { /** * Converts BCI coordinates from spherical to Cartesian. * * @param v BCI spherical coordinates, in the ISO order of radial distance, declination (radians), and right ascension (radians). * @return BCI Cartesian coordinates. */ template math::vector3 cartesian(const math::vector3& v) { const T x = v[0] * std::cos(v[1]); return math::vector3 { x * std::cos(v[2]), x * std::sin(v[2]), v[0] * std::sin(v[1]), }; } /** * Converts BCI coordinates from Cartesian to spherical. * * @param v BCI Cartesian coordinates. * @return BCI spherical coordinates, in the ISO order of radial distance, declination (radians), and right ascension (radians). */ template math::vector3 spherical(const math::vector3& v) { const T xx_yy = v.x * v.x + v.y * v.y; return math::vector3 { std::sqrt(xx_yy + v.z * v.z), std::atan2(v.z, std::sqrt(xx_yy)), std::atan2(v.y, v.x) }; } /** * Constructs an SE(3) transformation from a BCI frame to a BCBF frame. * * @param ra Right ascension of the north pole, in radians. * @param dec Declination of the north pole, in radians. * @param w Location of the prime meridian, as a rotation about the north pole, in radians. * @return BCI to BCBF transformation. */ template math::transformation::se3 to_bcbf(T ra, T dec, T w) { const math::quaternion r = math::normalize ( math::quaternion::rotate_z(-math::half_pi - ra) * math::quaternion::rotate_x(-math::half_pi + dec) * math::quaternion::rotate_z(-w) ); return math::transformation::se3{{T(0), T(0), T(0)}, r}; } /** * Constructs an SE(3) transformation from a BCI frame to a PQW frame. * * @param om Right ascension of the ascending node (OMEGA), in radians. * @param in Orbital inclination (i), in radians. * @param w Argument of periapsis (omega), in radians. * @return BCI to PQW transformation. */ template math::transformation::se3 to_pqw(T om, T in, T w) { const math::quaternion r = math::normalize ( math::quaternion::rotate_z(-w) * math::quaternion::rotate_x(-in) * math::quaternion::rotate_z(-om) ); return math::transformation::se3{{T(0), T(0), T(0)}, r}; } } // namespace bci /// Body-centered, body-fixed (BCBF) frame. namespace bcbf { /** * Converts BCBF coordinates from spherical to Cartesian. * * @param v BCBF spherical coordinates, in the ISO order of radial distance, latitude (radians), and longitude (radians). * @return BCBF Cartesian coordinates. */ template math::vector3 cartesian(const math::vector3& v) { const T x = v[0] * std::cos(v[1]); return math::vector3 { x * std::cos(v[2]), x * std::sin(v[2]), v[0] * std::sin(v[1]), }; } /** * Converts BCBF coordinates from Cartesian to spherical. * * @param v BCBF Cartesian coordinates. * @return BCBF spherical coordinates, in the ISO order of radial distance, latitude (radians), and longitude (radians). */ template math::vector3 spherical(const math::vector3& v) { const T xx_yy = v.x * v.x + v.y * v.y; return math::vector3 { std::sqrt(xx_yy + v.z * v.z), std::atan2(v.z, std::sqrt(xx_yy)), std::atan2(v.y, v.x) }; } /** * Constructs an SE(3) transformation from a BCBF frame to a BCI frame. * * @param ra Right ascension of the north pole, in radians. * @param dec Declination of the north pole, in radians. * @param w Location of the prime meridian, as a rotation about the north pole, in radians. * @return BCBF to BCI transformation. */ template math::transformation::se3 to_bci(T ra, T dec, T w) { const math::quaternion r = math::normalize ( math::quaternion::rotate_z(w) * math::quaternion::rotate_x(math::half_pi - dec) * math::quaternion::rotate_z(math::half_pi + ra) ); return math::transformation::se3{{T(0), T(0), T(0)}, r}; } /** * Constructs an SE(3) transformation from a BCBF frame to an ENU frame. * * @param distance Radial distance of the observer from the center of the body. * @param latitude Latitude of the observer, in radians. * @param longitude Longitude of the observer, in radians. * @return BCBF to ENU transformation. */ template math::transformation::se3 to_enu(T distance, T latitude, T longitude) { const math::vector3 t = {T(0), T(0), -distance}; const math::quaternion r = math::normalize ( math::quaternion::rotate_x(-math::half_pi + latitude) * math::quaternion::rotate_z(-longitude - math::half_pi) ); return math::transformation::se3{t, r}; } } // namespace bcbf /// East, North, Up (ENU) horizontal frame. namespace enu { /** * Converts ENU coordinates from spherical to Cartesian. * * @param v ENU spherical coordinates, in the ISO order of radial distance, elevation (radians), and azimuth (radians). * @return ENU Cartesian coordinates. */ template math::vector3 cartesian(const math::vector3& v) { const T x = v[0] * std::cos(v[1]); const T y = math::half_pi - v[2]; return math::vector3 { x * std::cos(y), x * std::sin(y), v[0] * std::sin(v[1]), }; } /** * Converts ENU coordinates from Cartesian to spherical. * * @param v ENU Cartesian coordinates. * @return ENU spherical coordinates, in the ISO order of radial distance, elevation (radians), and azimuth (radians). */ template math::vector3 spherical(const math::vector3& v) { const T xx_yy = v.x * v.x + v.y * v.y; return math::vector3 { std::sqrt(xx_yy + v.z * v.z), std::atan2(v.z, std::sqrt(xx_yy)), math::half_pi - std::atan2(v.y, v.x) }; } /** * Constructs an SE(3) transformation from an ENU frame to a BCBF frame. * * @param distance Radial distance of the observer from the center of the body. * @param latitude Latitude of the observer, in radians. * @param longitude Longitude of the observer, in radians. * @return ENU to BCBF transformation. */ template math::transformation::se3 to_bcbf(T distance, T latitude, T longitude) { const math::vector3 t = {T(0), T(0), distance}; const math::quaternion r = math::normalize ( math::quaternion::rotate_z(longitude + math::half_pi) * math::quaternion::rotate_x(math::half_pi - latitude) ); return math::transformation::se3{r * t, r}; } } // namespace enu } // namespace frame } // namespace orbit } // namespace physics #endif // ANTKEEPER_PHYSICS_ORBIT_FRAME_HPP