/* * Copyright (C) 2021 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #include "ecs/systems/astronomy-system.hpp" #include "astro/apparent-size.hpp" #include "ecs/components/celestial-body-component.hpp" #include "ecs/components/transform-component.hpp" #include "renderer/passes/sky-pass.hpp" #include "color/color.hpp" #include "physics/orbit/orbit.hpp" #include "physics/time/ut1.hpp" #include "geom/cartesian.hpp" #include namespace ecs { static constexpr double seconds_per_day = 24.0 * 60.0 * 60.0; astronomy_system::astronomy_system(ecs::registry& registry): entity_system(registry), universal_time(0.0), days_per_timestep(1.0 / seconds_per_day), observer_location{0.0, 0.0, 0.0}, lst(0.0), obliquity(0.0), axial_rotation(0.0), axial_rotation_at_epoch(0.0), axial_rotation_speed(0.0), sky_pass(nullptr), sun_light(nullptr) {} void astronomy_system::update(double t, double dt) { // Add scaled timestep to current time set_universal_time(universal_time + dt * days_per_timestep); set_universal_time(0.0); // Update horizontal (topocentric) positions of intrasolar celestial bodies registry.view().each( [&](ecs::entity entity, auto& body, auto& transform) { double time_correction = observer_location[2] / (math::two_pi / 24.0); double local_jd = universal_time + time_correction / 24.0 - 0.5; double local_time = (local_jd - std::floor(local_jd)) * 24.0; double local_lst = local_time / 24.0f * math::two_pi; // Transform orbital position from ecliptic space to horizontal space //double3 horizontal = ecliptic_to_horizontal * body.orbital_state.r; double3 horizontal = ecliptic_to_horizontal * double3{1, 0, 0}; // Subtract observer's radial distance (planet radius + observer's altitude) //horizontal.z -= observer_location[0]; // Convert Cartesian horizontal coordinates to spherical double3 spherical = geom::cartesian::to_spherical(horizontal); // Find angular radius double angular_radius = astro::find_angular_radius(body.radius, spherical[0]); // Transform into local coordinates const double3x3 horizontal_to_local = math::rotate_x(-math::half_pi) * math::rotate_z(-math::half_pi); double3 translation = horizontal_to_local * horizontal; double3x3 rotation = horizontal_to_local * ecliptic_to_horizontal; // Set local transform of transform component transform.local.translation = math::type_cast(translation); transform.local.rotation = math::normalize(math::type_cast(math::quaternion_cast(rotation))); transform.local.scale = math::type_cast(double3{body.radius, body.radius, body.radius}); if (sun_light != nullptr) { const double universal_time_cy = universal_time * 2.7397e-5; const double3 solar_system_barycenter = {0, 0, 0}; physics::orbit::elements earth_elements; earth_elements.a = 1.00000261 + 0.00000562 * universal_time_cy; earth_elements.e = 0.01671123 + -0.00004392 * universal_time_cy; earth_elements.i = math::radians(-0.00001531) + math::radians(-0.01294668) * universal_time_cy; earth_elements.raan = 0.0; const double earth_elements_mean_longitude = math::radians(100.46457166) + math::radians(35999.37244981) * universal_time_cy; const double earth_elements_longitude_perihelion = math::radians(102.93768193) + math::radians(0.32327364) * universal_time_cy; earth_elements.w = earth_elements_longitude_perihelion - earth_elements.raan; earth_elements.ta = earth_elements_mean_longitude - earth_elements_longitude_perihelion; // Calculate semi-minor axis, b double b = physics::orbit::derive_semiminor_axis(earth_elements.a, earth_elements.e); // Solve Kepler's equation for eccentric anomaly (E) double ea = physics::orbit::kepler_ea(earth_elements.e, earth_elements.ta, 10, 1e-6); // Calculate radial distance, r; and true anomaly, v double xv = earth_elements.a * (std::cos(ea) - earth_elements.e); double yv = b * std::sin(ea); double r = std::sqrt(xv * xv + yv * yv); double ta = std::atan2(yv, xv); // Position of the body in perifocal space const math::vector3 earth_position_pqw = math::quaternion::rotate_z(ta) * math::vector3{r, 0, 0}; const double earth_axial_tilt = math::radians(23.45); const double earth_axial_rotation = physics::time::ut1::era(universal_time); const double earth_radius_au = 4.2635e-5; const double observer_altitude = earth_radius_au; const double observer_latitude = math::radians(0.0); const double observer_longitude = math::radians(0.0); const physics::frame earth_inertial_to_pqw = physics::orbit::inertial::to_perifocal(solar_system_barycenter, earth_elements.raan, earth_elements.i, earth_elements.w); const math::vector3 earth_position_inertial = earth_inertial_to_pqw.inverse() * earth_position_pqw; const math::vector3 sun_position_intertial = math::vector3{0, 0, 0}; const physics::frame earth_inertial_to_bci = physics::orbit::inertial::to_bci(earth_position_inertial, earth_elements.i, earth_axial_tilt); const physics::frame earth_inertial_to_bcbf = physics::orbit::inertial::to_bcbf(earth_position_inertial, earth_elements.i, earth_axial_tilt, earth_axial_rotation); const physics::frame earth_bcbf_to_topo = physics::orbit::bcbf::to_topocentric(observer_altitude, observer_latitude, observer_longitude); const math::vector3 sun_position_earth_bci = earth_inertial_to_bci * sun_position_intertial; const math::vector3 sun_position_earth_bcbf = earth_inertial_to_bcbf * sun_position_intertial; const math::vector3 sun_position_earth_topo = earth_bcbf_to_topo * sun_position_earth_bcbf; const math::vector3 sun_radec = geom::cartesian::to_spherical(sun_position_earth_bci); const math::vector3 sun_azel = geom::cartesian::to_spherical(sun_position_earth_topo); const double sun_az = sun_azel.z; const double sun_el = sun_azel.y; double sun_ra = sun_radec.z; const double sun_dec = sun_radec.y; if (sun_ra < 0.0) sun_ra += math::two_pi; std::cout << "ra: " << (sun_ra / math::two_pi * 24.0) << "; dec: " << math::degrees(sun_dec) << std::endl; std::cout << "az: " << math::degrees(math::pi - sun_az) << "; el: " << math::degrees(sun_el) << std::endl; float az = spherical.z; float el = spherical.y; if (az < 0.0f) az += math::two_pi; //std::cout << "local: " << translation << std::endl; //std::cout << "az: " << math::degrees(az) << "; "; //std::cout << "el: " << math::degrees(el) << std::endl; math::quaternion sun_azimuth_rotation = math::angle_axis(static_cast(spherical.z), float3{0, 1, 0}); math::quaternion sun_elevation_rotation = math::angle_axis(static_cast(spherical.y), float3{1, 0, 0}); math::quaternion sun_az_el_rotation = math::normalize(sun_azimuth_rotation * sun_elevation_rotation); // Set sun color float cct = 3000.0f + std::sin(spherical.y) * 5000.0f; float3 color_xyz = color::cct::to_xyz(cct); float3 color_acescg = color::xyz::to_acescg(color_xyz); sun_light->set_color(color_acescg); // Set sun intensity (in lux) float intensity = std::max(0.0, std::sin(spherical.y) * 108000.0f); sun_light->set_intensity(intensity); //sun_light->set_translation({0, 500, 0}); sun_light->set_translation(transform.local.translation); //sun_light->set_rotation(transform.local.rotation); //sun_light->set_rotation(sun_az_el_rotation); //sun_light->set_rotation(sun_elevation_rotation); sun_light->set_rotation(math::look_rotation(math::normalize(-transform.local.translation), {0, 0, -1})); if (this->sky_pass) { this->sky_pass->set_sun_coordinates(transform.local.rotation * float3{0, 0, -1}, {static_cast(spherical.z), static_cast(spherical.y)}); } } }); if (sky_pass) { // Calculate local time double time_correction = observer_location[2] / (math::two_pi / 24.0); double local_jd = universal_time + time_correction / 24.0 - 0.5; double local_time = (local_jd - std::floor(local_jd)) * 24.0; sky_pass->set_time_of_day(local_time); } } void astronomy_system::set_universal_time(double time) { universal_time = time; update_axial_rotation(); } void astronomy_system::set_time_scale(double scale) { days_per_timestep = scale / seconds_per_day; } void astronomy_system::set_observer_location(const double3& location) { observer_location = location; update_sidereal_time(); } void astronomy_system::set_obliquity(double angle) { obliquity = angle; update_ecliptic_to_horizontal(); } void astronomy_system::set_axial_rotation_speed(double speed) { axial_rotation_speed = speed; update_axial_rotation(); } void astronomy_system::set_axial_rotation_at_epoch(double angle) { axial_rotation_at_epoch = angle; update_axial_rotation(); } void astronomy_system::set_sky_pass(::sky_pass* pass) { sky_pass = pass; } void astronomy_system::set_sun_light(scene::directional_light* light) { sun_light = light; } void astronomy_system::update_axial_rotation() { axial_rotation = math::wrap_radians(axial_rotation_at_epoch + universal_time * axial_rotation_speed); update_sidereal_time(); } void astronomy_system::update_sidereal_time() { lst = math::wrap_radians(axial_rotation + observer_location[2]); update_ecliptic_to_horizontal(); } void astronomy_system::update_ecliptic_to_horizontal() { //ecliptic_to_horizontal = coordinates::rectangular::ecliptic::to_horizontal(obliquity, observer_location[1], lst); } } // namespace ecs