/* * Copyright (C) 2020 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #include "painting-system.hpp" #include "game/components/transform-component.hpp" #include "game/components/brush-component.hpp" #include "event/event-dispatcher.hpp" #include "resources/resource-manager.hpp" #include "scene/scene.hpp" #include "scene/model-instance.hpp" #include "math/math.hpp" #include "renderer/material.hpp" #include "renderer/model.hpp" #include "utility/fundamental-types.hpp" #include "game/entity-commands.hpp" #include "game/components/collision-component.hpp" #include "game/components/transform-component.hpp" #include "rasterizer/vertex-buffer.hpp" #include "rasterizer/vertex-attribute-type.hpp" #include "renderer/vertex-attributes.hpp" #include using namespace ecs; painting_system::painting_system(entt::registry& registry, ::event_dispatcher* event_dispatcher, ::resource_manager* resource_manager): entity_system(registry), event_dispatcher(event_dispatcher), resource_manager(resource_manager), scene(nullptr), painting(false) { event_dispatcher->subscribe(this); event_dispatcher->subscribe(this); max_miter_angle = math::radians(135.0f); stroke_width = 1.0f; min_stroke_length = 1.0f; min_stroke_length_squared = min_stroke_length * min_stroke_length; max_stroke_segments = 4096; current_stroke_segment = 0; std::size_t vertex_size = 4; std::size_t vertex_stride = sizeof(float) * vertex_size; std::size_t vertex_count = max_stroke_segments * 6; // Create stroke model stroke_model = new model(); stroke_model_group = stroke_model->add_group(); stroke_model_group->set_material(resource_manager->load("brushstroke.mtl")); // Setup stroke vbo and vao stroke_vbo = stroke_model->get_vertex_buffer(); stroke_vbo->repurpose(sizeof(float) * vertex_size * vertex_count, nullptr, buffer_usage::dynamic_draw); stroke_model->get_vertex_array()->bind_attribute(VERTEX_POSITION_LOCATION, *stroke_vbo, 4, vertex_attribute_type::float_32, vertex_stride, 0); // Create stroke model instance stroke_model_instance = new model_instance(); stroke_model_instance->set_model(stroke_model); stroke_model_instance->update_tweens(); stroke_bounds_min.x = std::numeric_limits::infinity(); stroke_bounds_min.y = std::numeric_limits::infinity(); stroke_bounds_min.z = std::numeric_limits::infinity(); stroke_bounds_max.x = -std::numeric_limits::infinity(); stroke_bounds_max.y = -std::numeric_limits::infinity(); stroke_bounds_max.z = -std::numeric_limits::infinity(); midstroke = false; } painting_system::~painting_system() { event_dispatcher->unsubscribe(this); event_dispatcher->unsubscribe(this); } void painting_system::update(double t, double dt) { if (painting) { auto cast_result = cast_ray(ec::get_world_transform(registry, brush_entity).translation); if (cast_result.has_value()) { float3 p2 = stroke_end = cast_result.value(); float3 segment_difference = stroke_end - stroke_start; float segment_length_squared = math::dot(segment_difference, segment_difference); if (segment_length_squared >= min_stroke_length_squared) { float segment_length = std::sqrt(segment_length_squared); float3 segment_forward = segment_difference / segment_length; float3 segment_right = math::normalize(math::cross(segment_forward, float3{0, 1, 0})); float3 segment_up = math::cross(segment_right, segment_forward); float3 segment_center = (stroke_start + stroke_end) * 0.5f; float3 p1 = stroke_start; float3 p2 = stroke_end; // Find miter float3 tangent = math::normalize(math::normalize(p2 - p1) + math::normalize(p1 - p0)); float2 miter = float2{-tangent.z, tangent.x}; float2 normal = float2{segment_right.x, segment_right.z}; float miter_length = stroke_width / math::dot(miter, normal); float3 a = p0a; float3 b = p0b; float3 c = p1 - segment_right * stroke_width * 0.5f; float3 d = p1 + segment_right * stroke_width * 0.5f; float3 e = p2 - segment_right * stroke_width * 0.5f; float3 f = p2 + segment_right * stroke_width * 0.5f; // Adjust c and d bool mitered = false; if (midstroke) { float angle = std::acos(math::dot(math::normalize(p2 - p1), math::normalize(p1 - p0))); if (angle < max_miter_angle) { mitered = true; c = p1 - float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f; d = p1 + float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f; } } float4 segment_vertices[12]; float w = static_cast(t); segment_vertices[0] = {a.x, a.y, a.z, w}; segment_vertices[1] = {b.x, b.y, b.z, w}; segment_vertices[2] = {c.x, c.y, c.z, w}; segment_vertices[3] = {c.x, c.y, c.z, w}; segment_vertices[4] = {b.x, b.y, b.z, w}; segment_vertices[5] = {d.x, d.y, d.z, w}; segment_vertices[6] = {c.x, c.y, c.z, w}; segment_vertices[7] = {d.x, d.y, d.z, w}; segment_vertices[8] = {e.x, e.y, e.z, w}; segment_vertices[9] = {e.x, e.y, e.z, w}; segment_vertices[10] = {d.x, d.y, d.z, w}; segment_vertices[11] = {f.x, f.y, f.z, w}; std::size_t segment_size = sizeof(float) * 4 * 6; if (mitered) { stroke_vbo->update((current_stroke_segment - 1) * segment_size, segment_size * 2, &segment_vertices[0][0]); } else { stroke_vbo->update(current_stroke_segment * segment_size, segment_size, &segment_vertices[6][0]); } ++current_stroke_segment; stroke_model_group->set_index_count(current_stroke_segment * 6); // Update stroke bounds stroke_bounds_min.x = std::min(stroke_bounds_min.x, std::min(c.x, std::min(d.x, std::min(e.x, f.x)))); stroke_bounds_min.y = std::min(stroke_bounds_min.y, std::min(c.y, std::min(d.y, std::min(e.y, f.y)))); stroke_bounds_min.z = std::min(stroke_bounds_min.z, std::min(c.z, std::min(d.z, std::min(e.z, f.z)))); stroke_bounds_max.x = std::max(stroke_bounds_max.x, std::max(c.x, std::max(d.x, std::max(e.x, f.x)))); stroke_bounds_max.y = std::max(stroke_bounds_max.y, std::max(c.y, std::max(d.y, std::max(e.y, f.y)))); stroke_bounds_max.z = std::max(stroke_bounds_max.z, std::max(c.z, std::max(d.z, std::max(e.z, f.z)))); stroke_model->set_bounds(aabb{stroke_bounds_min, stroke_bounds_max}); stroke_model_instance->update_bounds(); p0 = stroke_start; p0a = c; p0b = d; stroke_start = stroke_end; midstroke = true; } } } } void painting_system::set_scene(::scene* scene) { this->scene = scene; scene->add_object(stroke_model_instance); } void painting_system::handle_event(const tool_pressed_event& event) { if (registry.has(event.entity)) { auto cast_result = cast_ray(ec::get_world_transform(registry, event.entity).translation); if (cast_result.has_value()) { brush_entity = event.entity; painting = true; stroke_start = cast_result.value(); stroke_end = stroke_start; p0 = stroke_start; p0a = p0; p0b = p0; midstroke = false; } } } void painting_system::handle_event(const tool_released_event& event) { if (registry.has(event.entity)) { auto cast_result = cast_ray(ec::get_world_transform(registry, event.entity).translation); if (cast_result.has_value()) { stroke_end = cast_result.value(); } brush_entity = entt::null; painting = false; } } std::optional painting_system::cast_ray(const float3& position) const { std::optional result; ray untransformed_ray = {position + float3{0.0f, 10000.0f, 0.0f}, {0, -1, 0}}; float min_distance = std::numeric_limits::infinity(); registry.view().each( [&](auto entity, auto& collision_transform, auto& collision) { // Transform ray into local space of collision component math::transform inverse_transform = math::inverse(collision_transform.local); float3 origin = inverse_transform * untransformed_ray.origin; float3 direction = math::normalize(math::conjugate(collision_transform.local.rotation) * untransformed_ray.direction); ray transformed_ray = {origin, direction}; // Broad phase AABB test auto aabb_result = ray_aabb_intersection(transformed_ray, collision.bounds); if (!std::get<0>(aabb_result)) { return; } // Narrow phase mesh test auto mesh_result = collision.mesh_accelerator.query_nearest(transformed_ray); if (mesh_result) { if (mesh_result->t < min_distance) { min_distance = mesh_result->t; result = untransformed_ray.extrapolate(min_distance); } } }); return result; }