/* * Copyright (C) 2020 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #include "game/systems/weather-system.hpp" #include "scene/directional-light.hpp" #include "scene/ambient-light.hpp" #include "renderer/passes/sky-pass.hpp" #include "renderer/passes/shadow-map-pass.hpp" #include "renderer/passes/material-pass.hpp" #include "utility/gamma.hpp" #include "resources/image.hpp" #include #include static constexpr double hours_per_day = 24.0; static constexpr double minutes_per_day = hours_per_day * 60.0; static constexpr double seconds_per_day = minutes_per_day * 60.0; /** * * @param year Gregorian year * @param month Month (1 = January, 12 = December) * @param day Day (1-31) * @param time Universal time in decimal hours. */ static double julian_day(int year, int month, int day, double time) { if (month < 3) { month += 12; year -= 1; } double y = static_cast(year); double m = static_cast(month); double d = static_cast(day); return std::floor(365.25 * y) + std::floor(30.6001 * (m + 1.0)) - 15.0 + 1720996.5 + d + time; } /// @see A Physically-Based Night Sky Model /// @see http://www.powerfromthesun.net/Book/chapter03/chapter03.html void find_sun_ecliptic(double jd, double* longitude, double* latitude, double* distance) { const double t = (jd - 2451545.0) / 36525.0; const double m = 6.24 + 628.302 * t; *longitude = 4.895048 + 628.331951 * t + (0.033417 - 0.000084 * t) * std::sin(m) + 0.000351 * std::sin(m * 2.0); *latitude = 0.0; *distance = 1.000140 - (0.016708 - 0.000042 * t) * std::cos(m) - 0.000141 * std::cos(m * 2.0); } /** * Calculates the ecliptic geocentric coordinates of the moon, given a Julian day. * * @param[in] jd Julian day. * @param[out] longitude Ecliptic longitude of the moon, in radians. * @param[out] latitude Ecliptic latitude of the moon, in radians. * @param[out] distance Distance to the moon, in Earth radii. * @return Array containing the ecliptic longitude and latitude of the moon, in radians. * * @see A Physically-Based Night Sky Model */ void find_moon_ecliptic(double jd, double* longitude, double* latitude, double* distance) { const double t = (jd - 2451545.0) / 36525.0; const double l1 = 3.8104 + 8399.7091 * t; const double m1 = 2.3554 + 8328.6911 * t; const double m = 6.2300 + 628.3019 * t; const double d = 5.1985 + 7771.3772 * t; const double d2 = d * 2.0; const double f = 1.6280 + 8433.4663 * t; *longitude = l1 + 0.1098 * std::sin(m1) + 0.0222 * std::sin(d2 - m1) + 0.0115 * std::sin(d2) + 0.0037 * std::sin(m1 * 2.0) - 0.0032 * std::sin(m) - 0.0020 * std::sin(d2) + 0.0010 * std::sin(d2 - m1 * 2.0) + 0.0010 * std::sin(d2 - m - m1) + 0.0009 * std::sin(d2 + m1) + 0.0008 * std::sin(d2 - m) + 0.0007 * std::sin(m1 - m) - 0.0006 * std::sin(d) - 0.0005 * std::sin(m + m1); *latitude = 0.0895 * sin(f) + 0.0049 * std::sin(m1 + f) + 0.0048 * std::sin(m1 - f) + 0.0030 * std::sin(d2 - f) + 0.0010 * std::sin(d2 + f - m1) + 0.0008 * std::sin(d2 - f - m1) + 0.0006 * std::sin(d2 + f); *distance = 1.0 / (0.016593 + 0.000904 * std::cos(m1) + 0.000166 * std::cos(d2 - m1) + 0.000137 * std::cos(d2) + 0.000049 * std::cos(m1 * 2.0) + 0.000015 * std::cos(d2 + m1) + 0.000009 * std::cos(d2 - m)); } /// @see http://www.stjarnhimlen.se/comp/ppcomp.html /// @see http://www.geoastro.de/elevazmoon/basics/index.htm void ecliptic_to_equatorial(double longitude, double latitude, double ecl, double* right_ascension, double* declination) { double eclip_x = std::cos(longitude) * std::cos(latitude); double eclip_y = std::sin(longitude) * std::cos(latitude); double eclip_z = std::sin(latitude); double equat_x = eclip_x; double equat_y = eclip_y * std::cos(ecl) - eclip_z * std::sin(ecl); double equat_z = eclip_y * std::sin(ecl) + eclip_z * std::cos(ecl); *right_ascension = std::atan2(equat_y, equat_x); *declination = std::atan2(equat_z, sqrt(equat_x * equat_x + equat_y * equat_y)); } /// @see http://www.stjarnhimlen.se/comp/ppcomp.html /// @see http://www.geoastro.de/elevazmoon/basics/index.htm void equatorial_to_horizontal(double right_ascension, double declination, double lmst, double latitude, double* azimuth, double* elevation) { double hour_angle = lmst - right_ascension; double x = std::cos(hour_angle) * std::cos(declination); double y = std::sin(hour_angle) * std::cos(declination); double z = std::sin(declination); double horiz_x = x * std::cos(math::half_pi - latitude) - z * std::sin(math::half_pi - latitude); double horiz_y = y; double horiz_z = x * std::sin(math::half_pi - latitude) + z * std::cos(math::half_pi - latitude); *azimuth = std::atan2(horiz_y, horiz_x) + math::pi; *elevation = std::atan2(horiz_z, std::sqrt(horiz_x * horiz_x + horiz_y * horiz_y)); } /** * Calculates the Greenwich mean sidereal time (GMST) from a Julian day. * * @param jd Julian day. * @return GMST, in radians. */ static double jd_to_gmst(double jd) { return math::wrap_radians(4.894961212 + 6.300388098 * (jd - 2451545.0)); } weather_system::weather_system(entt::registry& registry): entity_system(registry), ambient_light(nullptr), sun_light(nullptr), moon_light(nullptr), shadow_light(nullptr), sky_pass(nullptr), shadow_map_pass(nullptr), material_pass(nullptr), time_scale(1.0f), sky_palette(nullptr), shadow_palette(nullptr), sun_direction{0.0f, -1.0f, 0.0f}, coordinates{0.0f, 0.0f}, jd(0.0) {} void weather_system::update(double t, double dt) { jd += (dt * time_scale) / seconds_per_day; const float latitude = coordinates[0]; const float longitude = coordinates[1]; // Time correction double tc = longitude / (math::two_pi / 24.0); //double pst_tc = -7.0; double local_jd = jd + tc / 24.0 - 0.5; double local_time = (local_jd - std::floor(local_jd)) * 24.0; double hour = local_time; // Calculate equation of time //float eot_b = (360.0f / 365.0f) * (day_of_year - 81.0f); //float eot = 9.87f * std::sin(eot_b * 2.0f) - 7.53f * std::cos(eot_b) - 1.5f * std::sin(eot_b); // Calculate local mean sidereal time (LST) //double tc = longitude / (math::two_pi / 24.0); // Time correction //double ut = local_time + tc; // Universal time double gmst = jd_to_gmst(jd); double lmst = gmst + longitude; // Calculate sun position //float local_solar_time = local_time;// + eot / 60.0f; /* float sun_declination = math::radians(23.45f) * std::sin((math::two_pi / 365.0f) * (284.0f + day_of_year)); float sun_hour_angle = math::radians(15.0f) * (local_solar_time - 12.0f); sun_elevation = std::asin(std::sin(sun_declination) * std::sin(latitude) + std::cos(sun_declination) * std::cos(sun_hour_angle) * std::cos(latitude)); sun_azimuth = std::acos((std::sin(sun_declination) * std::cos(latitude) - std::cos(sun_declination) * std::cos(sun_hour_angle) * std::sin(latitude)) / std::cos(sun_elevation)); if (sun_hour_angle > 0.0f) sun_azimuth = math::two_pi - sun_azimuth; */ // J2000 day double d = jd - 2451545.0; // Obliquity of the ecliptic double ecl = math::radians(23.4393 - 3.563e-7 * d); // Calculation sun coordinates double sun_longitude; double sun_latitude; double sun_distance; double sun_right_ascension; double sun_declination; double sun_azimuth; double sun_elevation; find_sun_ecliptic(jd, &sun_longitude, &sun_latitude, &sun_distance); ecliptic_to_equatorial(sun_longitude, sun_latitude, ecl, &sun_right_ascension, &sun_declination); equatorial_to_horizontal(sun_right_ascension, sun_declination, lmst, latitude, &sun_azimuth, &sun_elevation); // Calculate moon coordinates double moon_longitude; double moon_latitude; double moon_distance; double moon_right_ascension; double moon_declination; double moon_azimuth; double moon_elevation; find_moon_ecliptic(jd, &moon_longitude, &moon_latitude, &moon_distance); ecliptic_to_equatorial(moon_longitude, moon_latitude, ecl, &moon_right_ascension, &moon_declination); equatorial_to_horizontal(moon_right_ascension, moon_declination, lmst, latitude, &moon_azimuth, &moon_elevation); /* std::cout.precision(10); std::cout << std::fixed; //std::cout << "gmst: " << math::degrees(gmst) << std::endl; std::cout << "JD: " << jd << std::endl; std::cout << "PST: " << pst_time << std::endl; std::cout << "AZ: " << math::degrees(sun_azimuth) << std::endl; std::cout << "EL: " << math::degrees(sun_elevation) << std::endl; std::cout << "DEC: " << math::degrees(sun_declination) << std::endl; //std::cout << "eOT: " << eot << std::endl; */ float2 sun_az_el = float2{static_cast(sun_azimuth), static_cast(sun_elevation)}; math::quaternion sun_azimuth_rotation = math::angle_axis(sun_az_el[0], float3{0, 1, 0}); math::quaternion sun_elevation_rotation = math::angle_axis(sun_az_el[1], float3{-1, 0, 0}); math::quaternion sun_rotation = math::normalize(sun_azimuth_rotation * sun_elevation_rotation); float3 sun_position = math::normalize(sun_rotation * float3{0, 0, -1}); float2 moon_az_el = float2{static_cast(moon_azimuth), static_cast(moon_elevation)}; math::quaternion moon_azimuth_rotation = math::angle_axis(moon_az_el[0], float3{0, 1, 0}); math::quaternion moon_elevation_rotation = math::angle_axis(moon_az_el[1], float3{-1, 0, 0}); math::quaternion moon_rotation = math::normalize(moon_azimuth_rotation * moon_elevation_rotation); float3 moon_position = math::normalize(moon_rotation * float3{0, 0, -1}); if (sun_light) { sun_light->set_rotation(sun_rotation); } if (moon_light) { moon_light->set_rotation(moon_rotation); } std::size_t hour_index = static_cast(hour); float lerp_factor = hour - std::floor(hour); if (sky_pass) { const std::array& gradient0 = sky_gradients[hour_index]; const std::array& gradient1 = sky_gradients[(hour_index + 1) % sky_gradients.size()]; std::array gradient; for (int i = 0; i < 4; ++i) { gradient[i] = math::lerp(gradient0[i], gradient1[i], lerp_factor); } float3 sun_color0 = sun_colors[hour_index]; float3 sun_color1 = sun_colors[(hour_index + 1) % sun_colors.size()]; float3 sun_color = math::lerp(sun_color0, sun_color1, lerp_factor); float3 moon_color0 = moon_colors[hour_index]; float3 moon_color1 = moon_colors[(hour_index + 1) % moon_colors.size()]; float3 moon_color = math::lerp(moon_color0, moon_color1, lerp_factor); float3 ambient_color0 = ambient_colors[hour_index]; float3 ambient_color1 = ambient_colors[(hour_index + 1) % sun_colors.size()]; float3 ambient_color = math::lerp(ambient_color0, ambient_color1, lerp_factor); sun_light->set_color(sun_color); moon_light->set_color(moon_color); moon_light->set_intensity(1.0f); ambient_light->set_color(ambient_color); sky_pass->set_sky_gradient(gradient); sky_pass->set_time_of_day(hour * 60.0 * 60.0); sky_pass->set_observer_coordinates(coordinates); sky_pass->set_sun_coordinates(sun_position, sun_az_el); sky_pass->set_moon_coordinates(moon_position, moon_az_el); } shadow_light = sun_light; if (shadow_map_pass) { if (sun_elevation < 0.0f) { shadow_map_pass->set_light(moon_light); } else { shadow_map_pass->set_light(sun_light); } } if (material_pass) { float shadow_strength0 = shadow_strengths[hour_index]; float shadow_strength1 = shadow_strengths[(hour_index + 1) % shadow_strengths.size()]; float shadow_strength = math::lerp(shadow_strength0, shadow_strength1, lerp_factor); material_pass->set_shadow_strength(shadow_strength); } } void weather_system::set_coordinates(const float2& coordinates) { this->coordinates = coordinates; } void weather_system::set_ambient_light(::ambient_light* light) { this->ambient_light = light; } void weather_system::set_sun_light(directional_light* light) { sun_light = light; } void weather_system::set_moon_light(directional_light* light) { moon_light = light; } void weather_system::set_sky_pass(::sky_pass* pass) { sky_pass = pass; } void weather_system::set_shadow_map_pass(::shadow_map_pass* pass) { shadow_map_pass = pass; if (shadow_map_pass) { shadow_map_pass->set_light(shadow_light); } } void weather_system::set_material_pass(::material_pass* pass) { material_pass = pass; if (material_pass) { material_pass->set_shadow_strength(0.75f); } } void weather_system::set_time(int year, int month, int day, int hour, int minute, int second, double tc) { double time = ((static_cast(hour) - tc) + ((static_cast(minute) + static_cast(second) / 60.0) / 60.0)) / 24.0; jd = julian_day(year, month, day, time); } void weather_system::set_time_scale(float scale) { time_scale = scale; } void weather_system::set_sky_palette(const ::image* image) { sky_palette = image; if (sky_palette) { unsigned int w = image->get_width(); unsigned int h = image->get_height(); unsigned int c = image->get_channels(); const unsigned char* pixels = static_cast(image->get_pixels()); for (unsigned int x = 0; x < w; ++x) { std::array gradient; for (unsigned int y = 0; y < std::min(4, h); ++y) { unsigned int i = y * w * c + x * c; float r = srgb_to_linear(static_cast(pixels[i]) / 255.0f); float g = srgb_to_linear(static_cast(pixels[i + 1]) / 255.0f); float b = srgb_to_linear(static_cast(pixels[i + 2]) / 255.0f); gradient[y] = {r, g, b, static_cast(y) * (1.0f / 3.0f)}; } sky_gradients.push_back(gradient); } } } void weather_system::set_sun_palette(const ::image* image) { sun_palette = image; if (sun_palette) { unsigned int w = image->get_width(); unsigned int h = image->get_height(); unsigned int c = image->get_channels(); const unsigned char* pixels = static_cast(image->get_pixels()); for (unsigned int x = 0; x < w; ++x) { float3 color; unsigned int y = 0; unsigned int i = y * w * c + x * c; float r = srgb_to_linear(static_cast(pixels[i]) / 255.0f); float g = srgb_to_linear(static_cast(pixels[i + 1]) / 255.0f); float b = srgb_to_linear(static_cast(pixels[i + 2]) / 255.0f); color = {r, g, b}; sun_colors.push_back(color); } } } void weather_system::set_moon_palette(const ::image* image) { moon_palette = image; if (moon_palette) { unsigned int w = image->get_width(); unsigned int h = image->get_height(); unsigned int c = image->get_channels(); const unsigned char* pixels = static_cast(image->get_pixels()); for (unsigned int x = 0; x < w; ++x) { float3 color; unsigned int y = 0; unsigned int i = y * w * c + x * c; float r = srgb_to_linear(static_cast(pixels[i]) / 255.0f); float g = srgb_to_linear(static_cast(pixels[i + 1]) / 255.0f); float b = srgb_to_linear(static_cast(pixels[i + 2]) / 255.0f); color = {r, g, b}; moon_colors.push_back(color); } } } void weather_system::set_ambient_palette(const ::image* image) { ambient_palette = image; if (ambient_palette) { unsigned int w = image->get_width(); unsigned int h = image->get_height(); unsigned int c = image->get_channels(); const unsigned char* pixels = static_cast(image->get_pixels()); for (unsigned int x = 0; x < w; ++x) { float3 color; unsigned int y = 0; unsigned int i = y * w * c + x * c; float r = srgb_to_linear(static_cast(pixels[i]) / 255.0f); float g = srgb_to_linear(static_cast(pixels[i + 1]) / 255.0f); float b = srgb_to_linear(static_cast(pixels[i + 2]) / 255.0f); color = {r, g, b}; ambient_colors.push_back(color); } } } void weather_system::set_shadow_palette(const ::image* image) { shadow_palette = image; if (shadow_palette) { unsigned int w = image->get_width(); unsigned int h = image->get_height(); unsigned int c = image->get_channels(); const unsigned char* pixels = static_cast(image->get_pixels()); for (unsigned int x = 0; x < w; ++x) { unsigned int y = 0; unsigned int i = y * w * c + x * c; float r = 1.0f - (static_cast(pixels[i]) / 255.0f); shadow_strengths.push_back(r); } } }