/* * Copyright (C) 2023 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #ifndef ANTKEEPER_PHYSICS_ORBIT_ELEMENTS_HPP #define ANTKEEPER_PHYSICS_ORBIT_ELEMENTS_HPP #include "utility/fundamental-types.hpp" #include "math/numbers.hpp" #include namespace physics { namespace orbit { /** * Set of six Keplerian elements required to uniquely identify an orbit. * * @tparam T Scalar type. */ template struct elements { /// Scalar type. typedef T scalar_type; /// Eccentricity (e). scalar_type ec; /// Semimajor axis (a). scalar_type a; /// Inclination (i), in radians. scalar_type in; /// Right ascension of the ascending node (OMEGA), in radians. scalar_type om; /// Argument of periapsis (omega), in radians. scalar_type w; /// Mean anomaly (M) at epoch, in radians. scalar_type ma; }; /** * Calculates the period of an elliptical orbit according to Kepler's third law. * * @param a Semimajor axis (a). * @param gm Standard gravitational parameter (GM). * @return Orbital period (T). */ template T period(T a, T gm); /** * Calculates the mean motion (n) of an orbit. * * @param a Semimajor axis (a). * @param gm Standard gravitational parameter (GM). * @return Mean motion (n), in radians per unit time. */ template T mean_motion(T a, T gm); /** * Calculates the mean motion (n) of an orbit. * * @param t Orbital period (T). * @return Mean motion (n), in radians per unit time. */ template T mean_motion(T t); /** * Derives the argument of the periapsis (omega) of an orbit, given the longitude of periapsis (pomega) and longitude of the ascending node (OMEGA). * * @param lp Longitude of the periapsis (pomega), in radians. * @param om Right ascension of the ascending node (OMEGA), in radians. * @return Argument of the periapsis (omega), in radians. */ template T argument_periapsis(T om, T lp); /** * Derives the longitude of the periapsis (pomega) of an orbit, given the argument of periapsis (omega) and longitude of the ascending node (OMEGA). * * @param w Argument of the periapsis (omega), in radians. * @param om Right ascension of the ascending node (OMEGA), in radians. * @return Longitude of the periapsis (pomega), in radians. */ template T longitude_periapsis(T om, T w); /** * Derives the semiminor axis (b) of an orbit, given the semimajor axis (a) and eccentricity (e). * * @param a Semimajor axis (a). * @param ec Eccentricity (e). * @return Semiminor axis (b). */ template T semiminor_axis(T a, T ec); /** * Derives the semi-latus rectum (l) of an orbit, given the semimajor axis (a) and eccentricity (e). * * @param a Semimajor axis (a). * @param ec Eccentricity (e). * @return Semi-latus rectum (l). */ template T semilatus_rectum(T a, T ec); template T period(T a, T gm) { return math::two_pi * std::sqrt((a * a * a) / gm); } template T mean_motion(T a, T gm) { return std::sqrt((a * a * a) / gm); } template T mean_motion(T t) { return math::two_pi / t; } template T argument_periapsis(T om, T lp) { return lp - om; } template T longitude_periapsis(T om, T w) { return w + om; } template T semiminor_axis(T a, T ec) { return a * std::sqrt(T(1) - ec * ec); } template T semilatus_rectum(T a, T ec) { return a * (T(1) - ec * ec); } } // namespace orbit } // namespace physics #endif // ANTKEEPER_PHYSICS_ORBIT_ELEMENTS_HPP