/*
* Copyright (C) 2017 Christopher J. Howard
*
* This file is part of Antkeeper Source Code.
*
* Antkeeper Source Code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper Source Code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper Source Code. If not, see .
*/
#include "render-passes.hpp"
#include "configuration.hpp"
#include "ui/ui.hpp"
#include
#include
ClearRenderPass::ClearRenderPass():
clearColor(true),
clearDepth(true),
clearStencil(true),
color(0.0f),
depth(1.0f),
index(0)
{}
bool ClearRenderPass::load(const RenderContext* renderContext)
{
return true;
}
void ClearRenderPass::unload()
{}
void ClearRenderPass::render(RenderContext* renderContext)
{
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
GLbitfield mask = 0;
if (clearColor)
{
mask |= GL_COLOR_BUFFER_BIT;
glClearColor(color[0], color[1], color[2], color[3]);
}
if (clearDepth)
{
mask |= GL_DEPTH_BUFFER_BIT;
glClearDepth(depth);
}
if (clearStencil)
{
mask |= GL_STENCIL_BUFFER_BIT;
glClearStencil(index);
}
glClear(mask);
}
void ClearRenderPass::setClear(bool color, bool depth, bool stencil)
{
clearColor = color;
clearDepth = depth;
clearStencil = stencil;
}
void ClearRenderPass::setClearColor(const Vector4& color)
{
this->color = color;
}
void ClearRenderPass::setClearDepth(float depth)
{
this->depth = depth;
}
void ClearRenderPass::setClearStencil(int index)
{
this->index = index;
}
BlurRenderPass::BlurRenderPass():
gammaCorrect(false)
{}
bool BlurRenderPass::load(const RenderContext* renderContext)
{
permutation = (gammaCorrect) ? 1 : 0;
// Load shader source
if (!shader.loadSource("data/shaders/blur.glsl"))
{
std::cerr << std::string("BlurRenderPass: failed to load shader source.") << std::endl;
return false;
}
// Generate permutation
if (!shader.generatePermutation(permutation))
{
std::cerr << std::string("BlurRenderPass: failed to generate shader permutation.") << std::endl;
return false;
}
// Connect shader variables
textureParam.connect(shader.getInput("blurTexture"));
resolutionParam.connect(shader.getInput("resolution"));
directionParam.connect(shader.getInput("direction"));
if (!textureParam.isConnected() ||
!resolutionParam.isConnected() ||
!directionParam.isConnected())
{
std::cerr << std::string("BlurRenderPass: one or more shader variables were not connected to shader inputs.") << std::endl;
return false;
}
// Initialize shader variables
resolutionParam.setValue(Vector2(renderTarget->width, renderTarget->height));
const float quadVertexData[] =
{
-1.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f
};
const std::uint32_t quadIndexData[] =
{
0, 1, 3,
3, 1, 2
};
quadVertexCount = 4;
quadIndexCount = 6;
// Create AABB geometry
glGenVertexArrays(1, &quadVAO);
glBindVertexArray(quadVAO);
glGenBuffers(1, &quadVBO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * quadVertexCount, quadVertexData, GL_STATIC_DRAW);
glEnableVertexAttribArray(EMERGENT_VERTEX_POSITION);
glVertexAttribPointer(EMERGENT_VERTEX_POSITION, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (char*)0 + 0*sizeof(float));
glGenBuffers(1, &quadIBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quadIBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(std::uint32_t) * quadIndexCount, quadIndexData, GL_STATIC_DRAW);
return true;
}
void BlurRenderPass::unload()
{
textureParam.disconnect();
resolutionParam.disconnect();
directionParam.disconnect();
shader.deleteAllPermutations();
glDeleteBuffers(1, &quadIBO);
glDeleteBuffers(1, &quadVBO);
glDeleteVertexArrays(1, &quadVAO);
}
void BlurRenderPass::render(RenderContext* renderContext)
{
// Bind framebuffer and set up viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Set up OpenGL state
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glDisable(GL_BLEND);
glDisable(GL_CULL_FACE);
// Activate shader permutation
shader.activate(permutation);
// Upload shader variables to shader permutation
textureParam.upload();
resolutionParam.upload();
directionParam.upload();
// Render quad
glBindVertexArray(quadVAO);
glDrawElementsBaseVertex(GL_TRIANGLES, quadIndexCount, GL_UNSIGNED_INT, (void*)0, 0);
// Unbind texture
//glBindTexture(GL_TEXTURE_2D, 0);
}
ShadowMapRenderPass::ShadowMapRenderPass():
croppedShadowMapViewports(nullptr),
viewCamera(nullptr),
splitViewFrustum(nullptr),
cropMatrices(nullptr),
tileMatrices(nullptr)
{}
bool ShadowMapRenderPass::load(const RenderContext* renderContext)
{
// Set maximum number of bones for skinned meshes
maxBoneCount = 64;
// Create split view frustum
splitViewFrustum = new SplitViewFrustum(4);
splitViewFrustum->setSplitSchemeWeight(0.85f);
// Determine resolution of shadow maps
shadowMapResolution = 4096;
croppedShadowMapResolution = shadowMapResolution >> 1;
// Allocate viewports
croppedShadowMapViewports = new Vector4[splitViewFrustum->getSubfrustumCount()];
// Setup viewports
for (int i = 0; i < splitViewFrustum->getSubfrustumCount(); ++i)
{
int x = i % 2;
int y = i / 2;
Vector4* viewport = &croppedShadowMapViewports[i];
(*viewport)[0] = static_cast(x * croppedShadowMapResolution);
(*viewport)[1] = static_cast(y * croppedShadowMapResolution);
(*viewport)[2] = static_cast(croppedShadowMapResolution);
(*viewport)[3] = static_cast(croppedShadowMapResolution);
}
// Allocate matrices
cropMatrices = new Matrix4[splitViewFrustum->getSubfrustumCount()];
tileMatrices = new Matrix4[splitViewFrustum->getSubfrustumCount()];
// Setup tile matrices
Matrix4 tileScale = glm::scale(Vector3(0.5f, 0.5f, 1.0f));
for (int i = 0; i < splitViewFrustum->getSubfrustumCount(); ++i)
{
float x = static_cast(i % 2) * 0.5f;
float y = static_cast(i / 2) * 0.5f;
tileMatrices[i] = glm::translate(Vector3(x, y, 0.0f)) * tileScale;
}
// Setup permutation values
unskinnedPermutation = 0;
skinnedPermutation = 1;
// Load shader source
if (!shader.loadSource("data/shaders/depth-pass.glsl"))
{
std::cerr << std::string("ShadowMapRenderPass: failed to load shader source.") << std::endl;
return false;
}
// Generate unskinned and skinned permutations
if (!shader.generatePermutation(unskinnedPermutation) || !shader.generatePermutation(skinnedPermutation))
{
std::cerr << std::string("ShadowMapRenderPass: failed to generate shader permutation.") << std::endl;
return false;
}
// Allocate bone palette parameter
matrixPaletteParam = new ShaderMatrix4(maxBoneCount);
// Connect shader variables
modelViewProjectionParam.connect(shader.getInput("modelViewProjectionMatrix"));
matrixPaletteParam->connect(shader.getInput("matrixPalette"));
if (!modelViewProjectionParam.isConnected() ||
!matrixPaletteParam->isConnected())
{
std::cerr << std::string("ShadowMapRenderPass: one or more shader variables were not connected to shader inputs.") << std::endl;
return false;
}
return true;
}
void ShadowMapRenderPass::unload()
{
modelViewProjectionParam.disconnect();
matrixPaletteParam->disconnect();
delete matrixPaletteParam;
shader.deleteAllPermutations();
delete[] croppedShadowMapViewports;
croppedShadowMapViewports = nullptr;
delete splitViewFrustum;
splitViewFrustum = nullptr;
delete[] cropMatrices;
cropMatrices = nullptr;
delete[] tileMatrices;
tileMatrices = nullptr;
}
void ShadowMapRenderPass::render(RenderContext* renderContext)
{
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Enable depth testing
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LESS);
// Clear the framebuffer depth
glClear(GL_DEPTH_BUFFER_BIT);
// Draw front and back faces
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// Disable alpha blending
glDisable(GL_BLEND);
//const Camera& lightCamera = *(renderContext->camera);
std::list* operations = renderContext->queue->getOperations();
GLuint boundVAO = 0;
splitViewFrustum->setMatrices(viewCamera->getView(), viewCamera->getProjection());
// Sort operations
operations->sort(RenderOpCompare());
std::uint32_t permutation = 0xDEADBEEF;
// For each frustum split
for (int i = 0; i < splitViewFrustum->getSubfrustumCount(); ++i)
{
// Calculate crop matrix
{
const ViewFrustum& subfrustum = splitViewFrustum->getSubfrustum(i);
// Create AABB containing the subfrustum corners
AABB subfrustumBounds(subfrustum.getCorner(0), subfrustum.getCorner(0));
for (std::size_t j = 1; j < 8; ++j)
{
subfrustumBounds.add(subfrustum.getCorner(j));
}
// Transform subfrustum bounds into light's clip space
AABB croppingBounds = subfrustumBounds.transformed(lightCamera->getViewProjection());
Vector3 cropMax = croppingBounds.getMax();
Vector3 cropMin = croppingBounds.getMin();
// Calculate scale
Vector3 scale;
scale.x = 2.0f / (cropMax.x - cropMin.x);
scale.y = 2.0f / (cropMax.y - cropMin.y);
scale.z = 1.0f / (cropMax.z - cropMin.z);
// Quantize scale
float scaleQuantizer = 64.0f;
scale.x = 1.0f / std::ceil(1.0f / scale.x * scaleQuantizer) * scaleQuantizer;
scale.y = 1.0f / std::ceil(1.0f / scale.y * scaleQuantizer) * scaleQuantizer;
// Calculate offset
Vector3 offset;
offset.x = (cropMax.x + cropMin.x) * scale.x * -0.5f;
offset.y = (cropMax.y + cropMin.y) * scale.y * -0.5f;
offset.z = -cropMin.z * scale.z;
// Quantize offset
float halfTextureSize = static_cast(croppedShadowMapResolution) * 0.5f;
offset.x = std::ceil(offset.x * halfTextureSize) / halfTextureSize;
offset.y = std::ceil(offset.y * halfTextureSize) / halfTextureSize;
cropMatrices[i] = glm::translate(offset) * glm::scale(scale);
}
Matrix4 croppedViewProjection = cropMatrices[i] * lightCamera->getViewProjection();
// Activate viewport for corresponding cropped shadow map
const Vector4& viewport = croppedShadowMapViewports[i];
glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
// Render operations
for (const RenderOperation& operation: *operations)
{
// Skip operations with no materials and materials with no shadows
if (operation.material == nullptr || (operation.material->getFlags() & MATERIAL_FLAG_DISABLE_SHADOW_CASTING))
{
continue;
}
// TODO: Perform culling for subfrustums
// Select permutation
std::uint32_t targetPermutation = (operation.pose != nullptr) ? skinnedPermutation : unskinnedPermutation;
if (permutation != targetPermutation)
{
permutation = targetPermutation;
shader.activate(permutation);
}
// Pass matrix palette
if (operation.pose != nullptr)
{
matrixPaletteParam->getConnectedInput()->upload(0, operation.pose->getMatrixPalette(), operation.pose->getSkeleton()->getBoneCount());
}
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewProjectionMatrix = croppedViewProjection * modelMatrix;
modelViewProjectionParam.setValue(modelViewProjectionMatrix);
modelViewProjectionParam.upload();
if (boundVAO != operation.vao)
{
glBindVertexArray(operation.vao);
boundVAO = operation.vao;
}
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
bool ShadowMapRenderPass::RenderOpCompare::operator()(const RenderOperation& opA, const RenderOperation& opB) const
{
// If A is rigged
if (opA.pose != nullptr)
{
// And B is rigged
if (opB.pose != nullptr)
{
// Sort by VAO ID
return (opA.vao <= opB.vao);
}
else
{
// Render A first
return true;
}
}
// Sort by VAO ID
return (opA.vao <= opB.vao);
}
LightingRenderPass::LightingRenderPass():
shadowMap(0),
shadowCamera(nullptr),
diffuseCubemap(nullptr),
specularCubemap(nullptr),
shadowMapPass(nullptr)
{
// Initialize bias matrix for calculating the model-view-projection-bias matrix (used for shadow map texture coordinate calculation)
biasMatrix = glm::translate(Vector3(0.5f)) * glm::scale(Vector3(0.5f));
maxBoneCount = 64;
maxDirectionalLightCount = 1;
maxSpotlightCount = 1;
}
bool LightingRenderPass::load(const RenderContext* renderContext)
{
// Load shaders for each material
// Register parameter sets for each unique shader
if (!shader.loadSource("data/shaders/standard.glsl"))
{
std::cerr << std::string("LightingRenderPass: Failed to load shader source.") << std::endl;
return false;
}
/*
if (renderContext != nullptr)
{
std::list* operations = renderContext->queue->getOperations();
for (RenderOperation& op: *operations)
{
}
}
*/
// Set permutation values
std::uint32_t IS_SKINNED = 1;
std::uint32_t HAS_AMBIENT_CUBE = 1 << 7;
unskinnedPermutation = HAS_AMBIENT_CUBE;
skinnedPermutation = IS_SKINNED | HAS_AMBIENT_CUBE;
// Generate shader permutations
if (!shader.generatePermutation(unskinnedPermutation) || !shader.generatePermutation(skinnedPermutation))
{
std::cerr << std::string("LightingRenderPass: failed to generate shader permutation.") << std::endl;
return false;
}
// Allocate shader array parameters
parameters.matrixPalette = new ShaderMatrix4(maxBoneCount);
parameters.lightViewProjectionMatrices = new ShaderMatrix4(4);
// Connect shader parameters
parameters.matrixPalette->connect(shader.getInput("matrixPalette"));
parameters.modelMatrix.connect(shader.getInput("modelMatrix"));
parameters.modelViewMatrix.connect(shader.getInput("modelViewMatrix"));
parameters.modelViewProjectionMatrix.connect(shader.getInput("modelViewProjectionMatrix"));
parameters.normalModelViewMatrix.connect(shader.getInput("normalModelViewMatrix"));
parameters.normalModelMatrix.connect(shader.getInput("normalModelMatrix"));
parameters.lightViewProjectionMatrices->connect(shader.getInput("lightViewProjectionMatrices"));
parameters.splitDistances.connect(shader.getInput("splitDistances"));
parameters.shadowMap.connect(shader.getInput("shadowMap"));
parameters.cameraPosition.connect(shader.getInput("cameraPosition"));
parameters.diffuseCubemap.connect(shader.getInput("diffuseCubemap"));
parameters.specularCubemap.connect(shader.getInput("specularCubemap"));
parameters.albedoOpacityMap.connect(shader.getInput("albedoOpacityMap"));
parameters.metalnessRoughnessMap.connect(shader.getInput("metalnessRoughnessMap"));
parameters.normalOcclusionMap.connect(shader.getInput("normalOcclusionMap"));
if (!parameters.matrixPalette->isConnected() ||
!parameters.modelMatrix.isConnected() ||
!parameters.modelViewMatrix.isConnected() ||
!parameters.modelViewProjectionMatrix.isConnected() ||
!parameters.normalModelViewMatrix.isConnected() ||
!parameters.normalModelMatrix.isConnected() ||
!parameters.lightViewProjectionMatrices->isConnected() ||
!parameters.splitDistances.isConnected() ||
!parameters.shadowMap.isConnected() ||
!parameters.cameraPosition.isConnected() ||
!parameters.diffuseCubemap.isConnected() ||
!parameters.specularCubemap.isConnected())
{
std::cerr << std::string("LightingRenderPass: one or more shader variables were not connected to shader inputs.") << std::endl;
}
return true;
}
void LightingRenderPass::unload()
{
// Free shader array parameters
delete parameters.matrixPalette;
delete parameters.lightViewProjectionMatrices;
parameters.matrixPalette = nullptr;
parameters.lightViewProjectionMatrices = nullptr;
shader.deleteAllPermutations();
}
void LightingRenderPass::render(RenderContext* renderContext)
{
const Camera& camera = *(renderContext->camera);
std::list* operations = renderContext->queue->getOperations();
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Enable depth testing
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LEQUAL);
// Enable backface culling
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// Enable alpha blending
//glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_BLEND);
Vector4 splitDistances;
for (int i = 0; i < 4; ++i)
{
splitDistances[i] = shadowMapPass->getSplitViewFrustum().getSplitDistance(i + 1);
}
Vector3 directionalLightColors[3];
Vector3 directionalLightDirections[3];
Vector3 spotlightColors[3];
Vector3 spotlightPositions[3];
Vector3 spotlightAttenuations[3];
Vector3 spotlightDirections[3];
float spotlightCutoffs[3];
float spotlightExponents[3];
// Add directional light
int directionalLightCount = 1;
directionalLightColors[0] = Vector3(1);
directionalLightDirections[0] = glm::normalize(Vector3(camera.getView() * -Vector4(0, -2, -1, 0)));
// Add spotlights
int spotlightCount = 0;
const std::list* lights = renderContext->layer->getObjects(SceneObjectType::LIGHT);
if (lights != nullptr)
{
for (auto object: *lights)
{
const Light* light = static_cast(object);
LightType lightType = light->getLightType();
if (lightType == LightType::SPOTLIGHT && light->isActive())
{
const Spotlight* spotlight = static_cast(light);
spotlightColors[spotlightCount] = spotlight->getScaledColor();
spotlightPositions[spotlightCount] = Vector3(camera.getView() * Vector4(spotlight->getTranslation(), 1.0f));
spotlightAttenuations[spotlightCount] = spotlight->getAttenuation();
spotlightDirections[spotlightCount] = glm::normalize(Vector3(camera.getView() * Vector4(-spotlight->getDirection(), 0.0f)));
spotlightCutoffs[spotlightCount] = spotlight->getCutoff();
spotlightExponents[spotlightCount] = spotlight->getExponent();
++spotlightCount;
}
}
}
// Calculate the (light-space) view-projection matrices
Matrix4 lightViewProjectionMatrices[4];
for (int i = 0; i < 4; ++i)
{
lightViewProjectionMatrices[i] = shadowMapPass->getTileMatrix(i) * biasMatrix * shadowMapPass->getCropMatrix(i) * shadowCamera->getViewProjection();
}
// Set shader parameter values
parameters.lightViewProjectionMatrices->setValues(0, &lightViewProjectionMatrices[0], 4);
parameters.splitDistances.setValue(splitDistances);
parameters.cameraPosition.setValue(camera.getTranslation());
parameters.diffuseCubemap.setValue(diffuseCubemap);
parameters.specularCubemap.setValue(specularCubemap);
parameters.shadowMap.setValue(shadowMap);
parameters.directionalLightCount.setValue(0);
parameters.spotlightCount.setValue(0);
std::uint32_t permutation = 0xDEADBEEF;
bool blending = false;
GLuint boundVAO = 0;
// Sort operations
operations->sort(RenderOpCompare());
// Render operations
for (const RenderOperation& operation: *operations)
{
// Skip operations without materials
if (!operation.material)
{
continue;
}
bool hasTranslucency = operation.material->getFlags() & MATERIAL_FLAG_TRANSLUCENT;
if (hasTranslucency && !blending)
{
glEnable(GL_BLEND);
blending = true;
}
// Select permutation
std::uint32_t targetPermutation = (operation.pose != nullptr) ? skinnedPermutation : unskinnedPermutation;
if (permutation != targetPermutation)
{
permutation = targetPermutation;
shader.activate(permutation);
// Pass static params
parameters.lightViewProjectionMatrices->upload();
parameters.splitDistances.upload();
parameters.cameraPosition.upload();
parameters.diffuseCubemap.upload();
parameters.specularCubemap.upload();
parameters.shadowMap.upload();
parameters.directionalLightCount.upload();
parameters.spotlightCount.upload();
/*
shader->setParameter(directionalLightCountParam, directionalLightCount);
shader->setParameter(directionalLightColorsParam, 0, &directionalLightColors[0], directionalLightCount);
shader->setParameter(directionalLightDirectionsParam, 0, &directionalLightDirections[0], directionalLightCount);
shader->setParameter(spotlightCountParam, spotlightCount);
shader->setParameter(spotlightColorsParam, 0, &spotlightColors[0], spotlightCount);
shader->setParameter(spotlightPositionsParam, 0, &spotlightPositions[0], spotlightCount);
shader->setParameter(spotlightAttenuationsParam, 0, &spotlightAttenuations[0], spotlightCount);
shader->setParameter(spotlightDirectionsParam, 0, &spotlightDirections[0], spotlightCount);
shader->setParameter(spotlightCutoffsParam, 0, &spotlightCutoffs[0], spotlightCount);
shader->setParameter(spotlightExponentsParam, 0, &spotlightExponents[0], spotlightCount);
*/
}
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewMatrix = camera.getView() * modelMatrix;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
Matrix3 normalModelViewMatrix = glm::transpose(glm::inverse(Matrix3(modelViewMatrix)));
Matrix3 normalModelMatrix = glm::transpose(glm::inverse(Matrix3(modelMatrix)));
parameters.modelMatrix.setValue(modelMatrix);
parameters.modelViewMatrix.setValue(modelViewMatrix);
parameters.modelViewProjectionMatrix.setValue(modelViewProjectionMatrix);
parameters.normalModelViewMatrix.setValue(normalModelViewMatrix);
parameters.normalModelMatrix.setValue(normalModelMatrix);
// Upload matrix parameters
parameters.modelMatrix.upload();
parameters.modelViewMatrix.upload();
parameters.modelViewProjectionMatrix.upload();
parameters.normalModelViewMatrix.upload();
parameters.normalModelMatrix.upload();
// Upload pose matrix palette
if (operation.pose != nullptr && parameters.matrixPalette->isConnected())
{
parameters.matrixPalette->getConnectedInput()->upload(0, operation.pose->getMatrixPalette(), operation.pose->getSkeleton()->getBoneCount());
}
// Upload material parameters
if (operation.material != nullptr)
{
if (operation.material->getShader() != &shader)
{
((Material*)operation.material)->setShader(&shader);
}
operation.material->upload();
}
if (boundVAO != operation.vao)
{
glBindVertexArray(operation.vao);
boundVAO = operation.vao;
}
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, 0);
}
bool LightingRenderPass::RenderOpCompare::operator()(const RenderOperation& opA, const RenderOperation& opB) const
{
if (!opA.material)
return false;
else if (!opB.material);
return true;
// Determine transparency
bool transparentA = opA.material->getFlags() & MATERIAL_FLAG_TRANSLUCENT;
bool transparentB = opB.material->getFlags() & MATERIAL_FLAG_TRANSLUCENT;
if (transparentA)
{
if (transparentB)
{
// A and B are both transparent, render back to front
return (opA.depth >= opB.depth);
}
else
{
// A is transparent, B is opaque. Render B first
return false;
}
}
else
{
if (transparentB)
{
// A is opaque, B is transparent. Render A first
return true;
}
else
{
// A and B are both opaque
if (opA.material->getShader() == opB.material->getShader())
{
// A and B have the same shader
if (opA.vao == opB.vao)
{
// A and B have the same VAO, sort by depth
return (opA.depth < opB.depth);
}
else
{
// Sort by VAO
return (opA.vao < opB.vao);
}
}
}
}
// A and B are both opaque and have different shaders, sort by shader
return (opA.material->getShader() < opB.material->getShader());
}
DebugRenderPass::DebugRenderPass()
{}
bool DebugRenderPass::load(const RenderContext* renderContext)
{
if (!shader.loadSource("data/shaders/unlit-solid.glsl"))
{
std::cerr << std::string("DebugRenderPass: Failed to load shader source.") << std::endl;
return false;
}
// Set permutation values
permutation = 0;
// Generate shader permutations
if (!shader.generatePermutation(permutation))
{
std::cerr << std::string("DebugRenderPass: failed to generate shader permutation.") << std::endl;
return false;
}
// Connect shader variables
modelViewProjectionMatrixParam.connect(shader.getInput("modelViewProjectionMatrix"));
if (!modelViewProjectionMatrixParam.isConnected())
{
std::cerr << std::string("DebugRenderPass: one or more shader variables were not connected to shader inputs.") << std::endl;
return false;
}
const float aabbVertexData[] =
{
-0.5, -0.5, -0.5,
0.5, -0.5, -0.5,
0.5, 0.5, -0.5,
-0.5, 0.5, -0.5,
-0.5, -0.5, 0.5,
0.5, -0.5, 0.5,
0.5, 0.5, 0.5,
-0.5, 0.5, 0.5,
};
const std::uint32_t aabbIndexData[] =
{
0, 1, 1, 2, 2, 3, 3, 0,
4, 5, 5, 6, 6, 7, 7, 4,
0, 4, 1, 5, 2, 6, 3, 7
};
aabbVertexCount = 8;
aabbIndexCount = 24;
// Create AABB geometry
glGenVertexArrays(1, &aabbVAO);
glBindVertexArray(aabbVAO);
glGenBuffers(1, &aabbVBO);
glBindBuffer(GL_ARRAY_BUFFER, aabbVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * aabbVertexCount, aabbVertexData, GL_STATIC_DRAW);
glEnableVertexAttribArray(EMERGENT_VERTEX_POSITION);
glVertexAttribPointer(EMERGENT_VERTEX_POSITION, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (char*)0 + 0*sizeof(float));
glGenBuffers(1, &aabbIBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, aabbIBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(std::uint32_t) * aabbIndexCount, aabbIndexData, GL_STATIC_DRAW);
return true;
}
void DebugRenderPass::unload()
{
modelViewProjectionMatrixParam.disconnect();
shader.deleteAllPermutations();
glDeleteBuffers(1, &aabbIBO);
glDeleteBuffers(1, &aabbVBO);
glDeleteVertexArrays(1, &aabbVAO);
}
void DebugRenderPass::render(RenderContext* renderContext)
{
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
const Camera& camera = *(renderContext->camera);
/*
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Clear the framebuffer depth
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Disable depth testing
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LESS);
*/
// Disable backface culling
glDisable(GL_CULL_FACE);
// Disable alpha blending
glDisable(GL_BLEND);
// Bind unlit solid shader
shader.activate(permutation);
// Bind AABB geometry
glBindVertexArray(aabbVAO);
const std::list* objects = renderContext->layer->getObjects();
for (auto object: *objects)
{
if (!camera.getCullingMask()->intersects(object->getBounds()))
continue;
const AABB& bounds = object->getBounds();
const Vector3& min = bounds.getMin();
const Vector3& max = bounds.getMax();
Vector3 scale = max - min;
Vector3 center = (min + max) * 0.5f;
const Vector3& translation = center;
Matrix4 modelMatrix = glm::translate(translation) * glm::scale(scale);
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
modelViewProjectionMatrixParam.setValue(modelViewProjectionMatrix);
modelViewProjectionMatrixParam.upload();
glDrawElements(GL_LINES, aabbIndexCount, GL_UNSIGNED_INT, (void*)0);
}
}
UIRenderPass::UIRenderPass()
{}
bool UIRenderPass::load(const RenderContext* renderContext)
{
if (!shader.loadSource("data/shaders/ui.glsl"))
{
std::cerr << std::string("UIRenderPass: Failed to load shader source.") << std::endl;
return false;
}
// Set permutation values
untexturedPermutation = 0;
texturedPermutation = 1;
// Generate shader permutations
if (!shader.generatePermutation(untexturedPermutation) || !shader.generatePermutation(texturedPermutation))
{
std::cerr << std::string("UIRenderPass: failed to generate shader permutation.") << std::endl;
return false;
}
// Connect shader variables
modelViewProjectionMatrixParam.connect(shader.getInput("modelViewProjectionMatrix"));
textureParam.connect(shader.getInput("tex"));
textureOffsetParam.connect(shader.getInput("texcoordOffset"));
textureScaleParam.connect(shader.getInput("texcoordScale"));
if (!modelViewProjectionMatrixParam.isConnected() ||
!textureParam.isConnected() ||
!textureOffsetParam.isConnected() ||
!textureScaleParam.isConnected())
{
std::cerr << std::string("UIRenderPass: one or more shader variables were not connected to shader inputs.") << std::endl;
return false;
}
return true;
}
void UIRenderPass::unload()
{
modelViewProjectionMatrixParam.disconnect();
textureParam.disconnect();
textureOffsetParam.disconnect();
textureScaleParam.disconnect();
shader.deleteAllPermutations();
}
void UIRenderPass::render(RenderContext* renderContext)
{
const Camera& camera = *(renderContext->camera);
// Bind framebuffer and setup viewport
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
// Disable depth testing
glDisable(GL_DEPTH_TEST);
//glDepthMask(GL_FALSE);
//glDepthFunc(GL_LESS);
// Disable backface culling
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// Enable alpha blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// Render operations
const std::list* operations = renderContext->queue->getOperations();
for (const RenderOperation& operation: *operations)
{
// Skip render operations with unsupported materials
/*
if (operation.material->getMaterialFormatID() != static_cast(MaterialFormat::UI))
{
continue;
}
*/
const UIMaterial* material = static_cast(operation.material);
if (material->texture->getValue() != nullptr)
{
shader.activate(texturedPermutation);
textureParam.setValue(material->texture->getValue());
textureOffsetParam.setValue(material->textureOffset->getValue());
textureScaleParam.setValue(material->textureScale->getValue());
textureParam.upload();
textureOffsetParam.upload();
textureScaleParam.upload();
}
else
{
shader.activate(untexturedPermutation);
}
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
// Upload matrix parameters
modelViewProjectionMatrixParam.setValue(modelViewProjectionMatrix);
modelViewProjectionMatrixParam.upload();
// Upload material parameters
//operation.material->upload();
// Draw geometry
glBindVertexArray(operation.vao);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
/*
VignetteRenderPass::VignetteRenderPass():
shader(nullptr)
{
bayerTextureParam = parameterSet.addParameter("bayerTexture", ShaderParameter::Type::INT, 1);
modelViewProjectionParam = parameterSet.addParameter("modelViewProjectionMatrix", ShaderParameter::Type::MATRIX_4, 1);
}
bool VignetteRenderPass::load(const RenderContext* renderContext)
{
shaderLoader.undefine();
shaderLoader.define("VERTEX_POSITION", EMERGENT_VERTEX_POSITION);
shaderLoader.define("VERTEX_COLOR", EMERGENT_VERTEX_COLOR);
shaderLoader.define("TEXTURE_COUNT", 1);
shader = shaderLoader.load("data/shaders/vignette.glsl", ¶meterSet);
if (!shader)
{
return false;
}
/// @see http://www.anisopteragames.com/how-to-fix-color-banding-with-dithering/
static const char pattern[] =
{
0, 32, 8, 40, 2, 34, 10, 42,
48, 16, 56, 24, 50, 18, 58, 26,
12, 44, 4, 36, 14, 46, 6, 38,
60, 28, 52, 20, 62, 30, 54, 22,
3, 35, 11, 43, 1, 33, 9, 41,
51, 19, 59, 27, 49, 17, 57, 25,
15, 47, 7, 39, 13, 45, 5, 37,
63, 31, 55, 23, 61, 29, 53, 21
};
glGenTextures(1, &bayerTextureID);
glBindTexture(GL_TEXTURE_2D, bayerTextureID);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, 8, 8, 0, GL_RED, GL_UNSIGNED_BYTE, pattern);
return true;
}
void VignetteRenderPass::unload()
{
delete shader;
shader = nullptr;
glDeleteTextures(1, &bayerTextureID);
}
void VignetteRenderPass::render(RenderContext* renderContext)
{
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
// Bind shader
shader->bind();
// Bind texture
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, bayerTextureID);
// Pass texture unit to shader
shader->setParameter(bayerTextureParam, 0);
const Camera& camera = *(renderContext->camera);
const std::list* operations = renderContext->queue->getOperations();
// Render operations
for (const RenderOperation& operation: *operations)
{
const Material* material = operation.material;
const Matrix4& modelMatrix = operation.transform;
Matrix4 modelViewProjectionMatrix = camera.getViewProjection() * modelMatrix;
shader->setParameter(modelViewProjectionParam, modelViewProjectionMatrix);
glBindVertexArray(operation.vao);
glDrawElementsBaseVertex(GL_TRIANGLES, operation.triangleCount * 3, GL_UNSIGNED_INT, (void*)0, operation.indexOffset);
}
}
*/
SkyboxRenderPass::SkyboxRenderPass():
cubemap(nullptr)
{}
bool SkyboxRenderPass::load(const RenderContext* renderContext)
{
if (!shader.loadSource("data/shaders/skybox.glsl"))
{
std::cerr << std::string("SkyboxRenderPass: Failed to load shader source.") << std::endl;
return false;
}
// Set permutation values
permutation = 0;
// Generate shader permutations
if (!shader.generatePermutation(permutation))
{
std::cerr << std::string("SkyboxRenderPass: failed to generate shader permutation.") << std::endl;
return false;
}
// Connect shader variables
matrixParam.connect(shader.getInput("matrix"));
cubemapParam.connect(shader.getInput("cubemap"));
if (!matrixParam.isConnected() || !cubemapParam.isConnected())
{
std::cerr << std::string("SkyboxRenderPass: one or more shader variables were not connected to shader inputs.") << std::endl;
return false;
}
const float quadVertexData[] =
{
-1.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f
};
const std::uint32_t quadIndexData[] =
{
0, 1, 3,
3, 1, 2
};
quadVertexCount = 4;
quadIndexCount = 6;
// Create AABB geometry
glGenVertexArrays(1, &quadVAO);
glBindVertexArray(quadVAO);
glGenBuffers(1, &quadVBO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * quadVertexCount, quadVertexData, GL_STATIC_DRAW);
glEnableVertexAttribArray(EMERGENT_VERTEX_POSITION);
glVertexAttribPointer(EMERGENT_VERTEX_POSITION, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (char*)0 + 0*sizeof(float));
glGenBuffers(1, &quadIBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quadIBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(std::uint32_t) * quadIndexCount, quadIndexData, GL_STATIC_DRAW);
return true;
}
void SkyboxRenderPass::unload()
{
matrixParam.disconnect();
cubemapParam.disconnect();
shader.deleteAllPermutations();
glDeleteBuffers(1, &quadIBO);
glDeleteBuffers(1, &quadVBO);
glDeleteVertexArrays(1, &quadVAO);
}
void SkyboxRenderPass::render(RenderContext* renderContext)
{
if (!cubemap)
{
return;
}
glBindFramebuffer(GL_FRAMEBUFFER, renderTarget->framebuffer);
glViewport(0, 0, renderTarget->width, renderTarget->height);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
//glDisable(GL_CULL_FACE);
//glCullFace(GL_BACK);
// Bind shader
shader.activate(permutation);
// Bind cubemap texture
cubemapParam.setValue(cubemap);
cubemapParam.upload();
// Calculate matrix
const Camera& camera = *(renderContext->camera);
Matrix4 modelView = Matrix4(Matrix3(camera.getView()));
Matrix4 matrix = glm::inverse(modelView) * glm::inverse(camera.getProjection());
// Upload matrix to shader
matrixParam.setValue(matrix);
matrixParam.upload();
// Render quad
glBindVertexArray(quadVAO);
glDrawElementsBaseVertex(GL_TRIANGLES, quadIndexCount, GL_UNSIGNED_INT, (void*)0, 0);
}