/* * Copyright (C) 2021 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #include "renderer/passes/sky-pass.hpp" #include "resources/resource-manager.hpp" #include "resources/string-table.hpp" #include "gl/rasterizer.hpp" #include "gl/framebuffer.hpp" #include "gl/shader-program.hpp" #include "gl/shader-input.hpp" #include "gl/vertex-buffer.hpp" #include "gl/vertex-array.hpp" #include "gl/vertex-attribute-type.hpp" #include "gl/drawing-mode.hpp" #include "gl/texture-2d.hpp" #include "gl/texture-wrapping.hpp" #include "gl/texture-filter.hpp" #include "renderer/vertex-attributes.hpp" #include "renderer/render-context.hpp" #include "renderer/model.hpp" #include "renderer/material.hpp" #include "scene/camera.hpp" #include "utility/fundamental-types.hpp" #include "color/color.hpp" #include "astro/illuminance.hpp" #include "math/interpolation.hpp" #include "geom/cartesian.hpp" #include "geom/spherical.hpp" #include "physics/orbit/orbit.hpp" #include "physics/light/photometry.hpp" #include #include #include #include sky_pass::sky_pass(gl::rasterizer* rasterizer, const gl::framebuffer* framebuffer, resource_manager* resource_manager): render_pass(rasterizer, framebuffer), mouse_position({0.0f, 0.0f}), sky_model(nullptr), sky_material(nullptr), sky_model_vao(nullptr), sky_shader_program(nullptr), moon_model(nullptr), moon_model_vao(nullptr), moon_material(nullptr), moon_shader_program(nullptr), stars_model(nullptr), stars_model_vao(nullptr), star_material(nullptr), star_shader_program(nullptr), time_tween(nullptr), observer_altitude_tween(0.0f, math::lerp), sun_position_tween(float3{1.0f, 0.0f, 0.0f}, math::lerp), sun_color_tween(float3{1.0f, 1.0f, 1.0f}, math::lerp), topocentric_frame_translation({0, 0, 0}, math::lerp), topocentric_frame_rotation(math::quaternion::identity(), math::nlerp) {} sky_pass::~sky_pass() {} void sky_pass::render(render_context* context) const { rasterizer->use_framebuffer(*framebuffer); glDisable(GL_BLEND); glDisable(GL_DEPTH_TEST); glDepthMask(GL_FALSE); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); auto viewport = framebuffer->get_dimensions(); rasterizer->set_viewport(0, 0, std::get<0>(viewport), std::get<1>(viewport)); float time = (*time_tween)[context->alpha]; float2 resolution = {static_cast(std::get<0>(viewport)), static_cast(std::get<1>(viewport))}; const scene::camera& camera = *context->camera; float clip_near = camera.get_clip_near_tween().interpolate(context->alpha); float clip_far = camera.get_clip_far_tween().interpolate(context->alpha); float3 model_scale = float3{1.0f, 1.0f, 1.0f} * (clip_near + clip_far) * 0.5f; float4x4 model = math::scale(math::identity4x4, model_scale); float4x4 view = math::resize<4, 4>(math::resize<3, 3>(camera.get_view_tween().interpolate(context->alpha))); float4x4 model_view = view * model; float4x4 projection = camera.get_projection_tween().interpolate(context->alpha); float4x4 view_projection = projection * view; float4x4 model_view_projection = projection * model_view; float exposure = std::exp2(camera.get_exposure_tween().interpolate(context->alpha)); // Interpolate observer altitude float observer_altitude = observer_altitude_tween.interpolate(context->alpha); // Construct tweened inertial to topocentric frame physics::frame topocentric_frame = { topocentric_frame_translation.interpolate(context->alpha), topocentric_frame_rotation.interpolate(context->alpha) }; // Get topocentric space direction to sun float3 sun_position = sun_position_tween.interpolate(context->alpha); float3 sun_direction = math::normalize(sun_position); // Interpolate sun color float3 sun_color = sun_color_tween.interpolate(context->alpha); // Draw sky model { rasterizer->use_program(*sky_shader_program); // Upload shader parameters if (model_view_projection_input) model_view_projection_input->upload(model_view_projection); if (mouse_input) mouse_input->upload(mouse_position); if (resolution_input) resolution_input->upload(resolution); if (time_input) time_input->upload(time); if (exposure_input) exposure_input->upload(exposure); if (observer_altitude_input) observer_altitude_input->upload(observer_altitude); if (sun_direction_input) sun_direction_input->upload(sun_direction); if (sun_angular_radius_input) sun_angular_radius_input->upload(sun_angular_radius); if (sun_color_input) sun_color_input->upload(sun_color); if (scale_height_rm_input) scale_height_rm_input->upload(scale_height_rm); if (rayleigh_scattering_input) rayleigh_scattering_input->upload(rayleigh_scattering); if (mie_scattering_input) mie_scattering_input->upload(mie_scattering); if (mie_anisotropy_input) mie_anisotropy_input->upload(mie_anisotropy); if (atmosphere_radii_input) atmosphere_radii_input->upload(atmosphere_radii); sky_material->upload(context->alpha); rasterizer->draw_arrays(*sky_model_vao, sky_model_drawing_mode, sky_model_start_index, sky_model_index_count); } glEnable(GL_BLEND); //glBlendFunc(GL_SRC_ALPHA, GL_ONE); glBlendFunc(GL_ONE, GL_ONE); // Draw stars if (stars_model) { float star_distance = (clip_near + clip_far) * 0.5f; model = math::resize<4, 4>(math::matrix_cast(topocentric_frame.rotation)); model = math::scale(model, {star_distance, star_distance, star_distance}); model_view = view * model; rasterizer->use_program(*star_shader_program); if (star_model_view_input) star_model_view_input->upload(model_view); if (star_projection_input) star_projection_input->upload(projection); if (star_distance_input) star_distance_input->upload(star_distance); if (star_exposure_input) star_exposure_input->upload(exposure); star_material->upload(context->alpha); rasterizer->draw_arrays(*stars_model_vao, stars_model_drawing_mode, stars_model_start_index, stars_model_index_count); } // Draw moon model /* float3 moon_position = {0, 0, 0}; if (moon_position.y >= -moon_angular_radius) { float moon_distance = (clip_near + clip_far) * 0.5f; float moon_radius = moon_angular_radius * moon_distance; math::transform moon_transform; moon_transform.translation = moon_position * -moon_distance; moon_transform.rotation = math::quaternion::identity(); moon_transform.scale = {moon_radius, moon_radius, moon_radius}; model = math::matrix_cast(moon_transform); model_view = view * model; model_view_projection = projection * model_view; float3x3 normal_model = math::transpose(math::inverse(math::resize<3, 3>(model))); rasterizer->use_program(*moon_shader_program); if (moon_model_view_projection_input) moon_model_view_projection_input->upload(model_view_projection); if (moon_normal_model_input) moon_normal_model_input->upload(normal_model); if (moon_moon_position_input) moon_moon_position_input->upload(moon_position); if (moon_sun_position_input) moon_sun_position_input->upload(sun_position); moon_material->upload(context->alpha); rasterizer->draw_arrays(*moon_model_vao, moon_model_drawing_mode, moon_model_start_index, moon_model_index_count); } */ } void sky_pass::set_sky_model(const model* model) { sky_model = model; if (sky_model) { sky_model_vao = model->get_vertex_array(); const std::vector& groups = *model->get_groups(); for (model_group* group: groups) { sky_material = group->get_material(); sky_model_drawing_mode = group->get_drawing_mode(); sky_model_start_index = group->get_start_index(); sky_model_index_count = group->get_index_count(); } if (sky_material) { sky_shader_program = sky_material->get_shader_program(); if (sky_shader_program) { model_view_projection_input = sky_shader_program->get_input("model_view_projection"); mouse_input = sky_shader_program->get_input("mouse"); resolution_input = sky_shader_program->get_input("resolution"); time_input = sky_shader_program->get_input("time"); exposure_input = sky_shader_program->get_input("camera.exposure"); observer_altitude_input = sky_shader_program->get_input("observer_altitude"); sun_direction_input = sky_shader_program->get_input("sun_direction"); sun_color_input = sky_shader_program->get_input("sun_color"); sun_angular_radius_input = sky_shader_program->get_input("sun_angular_radius"); scale_height_rm_input = sky_shader_program->get_input("scale_height_rm"); rayleigh_scattering_input = sky_shader_program->get_input("rayleigh_scattering"); mie_scattering_input = sky_shader_program->get_input("mie_scattering"); mie_anisotropy_input = sky_shader_program->get_input("mie_anisotropy"); atmosphere_radii_input = sky_shader_program->get_input("atmosphere_radii"); } } } else { sky_model_vao = nullptr; } } void sky_pass::set_moon_model(const model* model) { moon_model = model; if (moon_model) { moon_model_vao = model->get_vertex_array(); const std::vector& groups = *model->get_groups(); for (model_group* group: groups) { moon_material = group->get_material(); moon_model_drawing_mode = group->get_drawing_mode(); moon_model_start_index = group->get_start_index(); moon_model_index_count = group->get_index_count(); } if (moon_material) { moon_shader_program = moon_material->get_shader_program(); if (moon_shader_program) { moon_model_view_projection_input = moon_shader_program->get_input("model_view_projection"); moon_normal_model_input = moon_shader_program->get_input("normal_model"); moon_moon_position_input = moon_shader_program->get_input("moon_position"); moon_sun_position_input = moon_shader_program->get_input("sun_position"); } } } else { moon_model = nullptr; } } void sky_pass::set_stars_model(const model* model) { stars_model = model; if (stars_model) { stars_model_vao = model->get_vertex_array(); const std::vector& groups = *model->get_groups(); for (model_group* group: groups) { star_material = group->get_material(); stars_model_drawing_mode = group->get_drawing_mode(); stars_model_start_index = group->get_start_index(); stars_model_index_count = group->get_index_count(); } if (star_material) { star_shader_program = star_material->get_shader_program(); if (star_shader_program) { star_model_view_input = star_shader_program->get_input("model_view"); star_projection_input = star_shader_program->get_input("projection"); star_distance_input = star_shader_program->get_input("star_distance"); star_exposure_input = star_shader_program->get_input("camera.exposure"); } } } else { stars_model = nullptr; } } void sky_pass::update_tweens() { observer_altitude_tween.update(); sun_position_tween.update(); sun_color_tween.update(); topocentric_frame_translation.update(); topocentric_frame_rotation.update(); } void sky_pass::set_time_tween(const tween* time) { this->time_tween = time; } void sky_pass::set_topocentric_frame(const physics::frame& frame) { topocentric_frame_translation[1] = frame.translation; topocentric_frame_rotation[1] = frame.rotation; } void sky_pass::set_sun_position(const float3& position) { sun_position_tween[1] = position; } void sky_pass::set_sun_color(const float3& color) { sun_color_tween[1] = color; } void sky_pass::set_sun_angular_radius(float radius) { sun_angular_radius = radius; } void sky_pass::set_observer_altitude(float altitude) { observer_altitude_tween[1] = altitude; } void sky_pass::set_scale_heights(float rayleigh, float mie) { scale_height_rm = {rayleigh, mie}; } void sky_pass::set_scattering_coefficients(const float3& r, const float3& m) { rayleigh_scattering = r; mie_scattering = m; } void sky_pass::set_mie_anisotropy(float g) { mie_anisotropy = {g, g * g}; } void sky_pass::set_atmosphere_radii(float inner, float outer) { atmosphere_radii.x = inner; atmosphere_radii.y = outer; atmosphere_radii.z = outer * outer; } void sky_pass::handle_event(const mouse_moved_event& event) { mouse_position = {static_cast(event.x), static_cast(event.y)}; }