Browse Source

Improve and consolidate quaternion struct. Add more quaternion operators

master
C. J. Howard 2 years ago
parent
commit
c753b8182c
36 changed files with 1108 additions and 864 deletions
  1. +1
    -1
      src/ai/steering/agent.hpp
  2. +1
    -2
      src/ai/steering/behavior/wander.cpp
  3. +1
    -3
      src/entity/commands.cpp
  4. +1
    -1
      src/game/ant/morphogenesis.cpp
  5. +2
    -2
      src/game/ant/swarm.cpp
  6. +2
    -2
      src/game/state/splash.cpp
  7. +2
    -2
      src/game/system/astronomy.cpp
  8. +2
    -8
      src/game/system/constraint.cpp
  9. +1
    -1
      src/game/system/steering.cpp
  10. +1
    -1
      src/game/system/terrain.cpp
  11. +1
    -1
      src/game/system/terrain.hpp
  12. +27
    -0
      src/math/linear-algebra.hpp
  13. +1
    -6
      src/math/math.hpp
  14. +45
    -3
      src/math/matrix.hpp
  15. +0
    -4
      src/math/operators.hpp
  16. +0
    -33
      src/math/polynomial.hpp
  17. +0
    -510
      src/math/quaternion-functions.hpp
  18. +0
    -97
      src/math/quaternion-operators.hpp
  19. +0
    -92
      src/math/quaternion-type.hpp
  20. +959
    -0
      src/math/quaternion.hpp
  21. +1
    -3
      src/math/se3.hpp
  22. +0
    -65
      src/math/stream-operators.hpp
  23. +1
    -1
      src/math/transform-functions.hpp
  24. +4
    -4
      src/math/transform-type.hpp
  25. +37
    -4
      src/math/vector.hpp
  26. +1
    -1
      src/render/passes/material-pass.cpp
  27. +1
    -1
      src/render/passes/shadow-map-pass.cpp
  28. +2
    -2
      src/render/passes/sky-pass.cpp
  29. +1
    -1
      src/render/passes/sky-pass.hpp
  30. +1
    -1
      src/render/renderer.cpp
  31. +4
    -4
      src/resources/entity-archetype-loader.cpp
  32. +4
    -4
      src/resources/model-loader.cpp
  33. +1
    -1
      src/scene/camera.cpp
  34. +1
    -1
      src/scene/directional-light.cpp
  35. +1
    -1
      src/scene/object.hpp
  36. +1
    -1
      src/scene/spot-light.cpp

+ 1
- 1
src/ai/steering/agent.hpp View File

@ -21,7 +21,7 @@
#define ANTKEEPER_AI_STEERING_AGENT_HPP
#include "utility/fundamental-types.hpp"
#include "math/quaternion-type.hpp"
#include "math/quaternion.hpp"
namespace ai {
namespace steering {

+ 1
- 2
src/ai/steering/behavior/wander.cpp View File

@ -20,8 +20,7 @@
#include "ai/steering/behavior/wander.hpp"
#include "ai/steering/behavior/seek.hpp"
#include "math/random.hpp"
#include "math/quaternion-functions.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
namespace ai {
namespace steering {

+ 1
- 3
src/entity/commands.cpp View File

@ -23,9 +23,7 @@
#include "game/component/parent.hpp"
#include "game/component/celestial-body.hpp"
#include "game/component/terrain.hpp"
#include "math/quaternion-type.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion-functions.hpp"
#include "math/quaternion.hpp"
#include <limits>
namespace entity {

+ 1
- 1
src/game/ant/morphogenesis.cpp View File

@ -21,7 +21,7 @@
#include "render/material.hpp"
#include "render/vertex-attribute.hpp"
#include "math/transform-operators.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include <unordered_set>
#include <iostream>

+ 2
- 2
src/game/ant/swarm.cpp View File

@ -23,7 +23,7 @@
#include "game/component/model.hpp"
#include "game/component/picking.hpp"
#include "resources/resource-manager.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "config.hpp"
#include <cmath>
#include <random>
@ -99,7 +99,7 @@ entity::id create_swarm(game::context& ctx)
steering.agent.max_force = 4.0f;
steering.agent.max_speed = 5.0f;
steering.agent.max_speed_squared = steering.agent.max_speed * steering.agent.max_speed;
steering.agent.orientation = math::quaternion<float>::identity;
steering.agent.orientation = math::quaternion<float>::identity();
steering.agent.forward = steering.agent.orientation * config::global_forward;
steering.agent.up = steering.agent.orientation * config::global_up;
steering.wander_weight = 1.0f;

+ 2
- 2
src/game/state/splash.cpp View File

@ -29,7 +29,7 @@
#include "debug/logger.hpp"
#include "resources/resource-manager.hpp"
#include "render/material-flags.hpp"
#include "math/matrix.hpp"
#include "math/linear-algebra.hpp"
#include <iostream>
namespace game {
@ -37,7 +37,7 @@ namespace state {
splash::splash(game::context& ctx):
game::state::base(ctx)
{
{
ctx.logger->push_task("Entering splash state");
// Enable color buffer clearing in UI pass

+ 2
- 2
src/game/system/astronomy.cpp View File

@ -158,7 +158,7 @@ void astronomy::update(double t, double dt)
if (orbit.parent != entt::null)
{
transform.local.translation = math::normalize(float3(r_eus));
transform.local.rotation = math::type_cast<float>(rotation_eus);
transform.local.rotation = math::quaternion<float>(rotation_eus);
transform.local.scale = {1.0f, 1.0f, 1.0f};
}
});
@ -581,7 +581,7 @@ void astronomy::update_icrf_to_eus(const game::component::celestial_body& body,
math::transformation::se3<float>
{
float3(icrf_to_eus.t),
math::type_cast<float>(icrf_to_eus.r)
math::quaternion<float>(icrf_to_eus.r)
}
);
}

+ 2
- 8
src/game/system/constraint.cpp View File

@ -19,7 +19,7 @@
#include "game/system/constraint.hpp"
#include "game/component/constraint-stack.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "math/transform-operators.hpp"
namespace game {
@ -311,13 +311,7 @@ void constraint::handle_spring_to_constraint(component::transform& transform, co
if (constraint.spring_rotation)
{
// Update rotation spring target
constraint.rotation.x1 =
{
target_transform->world.rotation.w,
target_transform->world.rotation.x,
target_transform->world.rotation.y,
target_transform->world.rotation.z
};
constraint.rotation.x1 = float4(target_transform->world.rotation);
// Solve rotation spring
solve_numeric_spring<float4, float>(constraint.rotation, dt);

+ 1
- 1
src/game/system/steering.cpp View File

@ -23,7 +23,7 @@
#include "entity/id.hpp"
#include "ai/steering/behavior/wander.hpp"
#include "ai/steering/behavior/seek.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "config.hpp"
namespace game {

+ 1
- 1
src/game/system/terrain.cpp View File

@ -26,7 +26,7 @@
#include "geom/quadtree.hpp"
#include "geom/primitive/ray.hpp"
#include "gl/vertex-attribute.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "render/vertex-attribute.hpp"
#include "utility/fundamental-types.hpp"
#include <functional>

+ 1
- 1
src/game/system/terrain.hpp View File

@ -23,7 +23,7 @@
#include "game/system/updatable.hpp"
#include "game/component/terrain.hpp"
#include "entity/id.hpp"
#include "math/quaternion-type.hpp"
#include "math/quaternion.hpp"
#include "geom/quadtree.hpp"
#include "geom/mesh.hpp"
#include "utility/fundamental-types.hpp"

+ 27
- 0
src/math/linear-algebra.hpp View File

@ -0,0 +1,27 @@
/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ANTKEEPER_MATH_LINEAR_ALGEBRA_HPP
#define ANTKEEPER_MATH_LINEAR_ALGEBRA_HPP
#include "math/matrix.hpp"
#include "math/quaternion.hpp"
#include "math/vector.hpp"
#endif // ANTKEEPER_MATH_LINEAR_ALGEBRA_HPP

+ 1
- 6
src/math/math.hpp View File

@ -25,18 +25,13 @@ namespace math {}
#include "math/vector.hpp"
#include "math/matrix.hpp"
#include "math/quaternion-type.hpp"
#include "math/quaternion-functions.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "math/se3.hpp"
#include "math/transform-type.hpp"
#include "math/transform-functions.hpp"
#include "math/transform-operators.hpp"
#include "math/stream-operators.hpp"
#include "math/angles.hpp"
#include "math/constants.hpp"
#include "math/quadrature.hpp"

+ 45
- 3
src/math/matrix.hpp View File

@ -365,7 +365,7 @@ constexpr T determinant(const matrix& m) noexcept;
/**
* Calculates the inverse of a square matrix.
*
* @param m Matrix of which to take the inverse.
* @param m Square matrix.
*
* @return Inverse of matrix @p m.
*
@ -379,6 +379,8 @@ constexpr matrix inverse(const matrix& m) noexcept;
*
* @param x First matrix multiplicand.
* @param y Second matrix multiplicand.
*
* @return Product of the component-wise multiplcation.
*/
template <class T, std::size_t N, std::size_t M>
constexpr matrix<T, N, M> componentwise_mul(const matrix<T, N, M>& a, const matrix<T, N, M>& b) noexcept;
@ -388,6 +390,7 @@ constexpr matrix componentwise_mul(const matrix& a, const matr
*
* @param a First matrix.
* @param b Second matrix.
*
* @return Result of the division.
*/
template <class T, std::size_t N, std::size_t M>
@ -398,6 +401,7 @@ constexpr matrix div(const matrix& a, const matrix& b
*
* @param a Matrix.
* @param b Scalar.
*
* @return Result of the division.
*/
template <class T, std::size_t N, std::size_t M>
@ -408,6 +412,7 @@ constexpr matrix div(const matrix& a, T b) noexcept;
*
* @param a Scalar.
* @param b Matrix.
*
* @return Result of the division.
*/
template <class T, std::size_t N, std::size_t M>
@ -419,6 +424,7 @@ constexpr matrix div(T a, const matrix& b) noexcept;
* @param position Position of the view point.
* @param target Position of the target.
* @param up Normalized direction of the up vector.
*
* @return Viewing transformation matrix.
*/
template <class T>
@ -445,6 +451,7 @@ constexpr matrix mul(const matrix& a, const matrix& b
*
* @param a Matrix.
* @param b Scalar.
*
* @return Product of the matrix and the scalar.
*/
template <class T, std::size_t N, std::size_t M>
@ -476,7 +483,8 @@ constexpr typename matrix::row_vector_type mul(const typename matrix
* Constructs a rotation matrix.
*
* @param angle Angle of rotation, in radians.
* @param axis Axis of rotation
* @param axis Axis of rotation.
*
* @return Rotation matrix.
*/
template <class T>
@ -486,6 +494,7 @@ matrix rotate(T angle, const vector& axis);
* Produces a matrix which rotates Cartesian coordinates about the x-axis by a given angle.
*
* @param angle Angle of rotation, in radians.
*
* @return Rotation matrix.
*/
template <class T>
@ -495,6 +504,7 @@ matrix3 rotate_x(T angle);
* Produces a matrix which rotates Cartesian coordinates about the y-axis by a given angle.
*
* @param angle Angle of rotation, in radians.
*
* @return Rotation matrix.
*/
template <class T>
@ -504,6 +514,7 @@ matrix3 rotate_y(T angle);
* Produces a matrix which rotates Cartesian coordinates about the z-axis by a given angle.
*
* @param angle Angle of rotation, in radians.
*
* @return Rotation matrix.
*/
template <class T>
@ -514,6 +525,7 @@ matrix3 rotate_z(T angle);
*
* @param m Matrix to scale.
* @param v Scale vector.
*
* @return Scaled matrix.
*/
template <class T>
@ -552,11 +564,22 @@ constexpr matrix sub(const matrix& a, T b) noexcept;
template <class T, std::size_t N, std::size_t M>
constexpr matrix<T, N, M> sub(T a, const matrix<T, N, M>& b) noexcept;
/**
* Calculates the trace of a square matrix.
*
* @param m Square matrix.
*
* @return Sum of elements on the main diagonal.
*/
template <class T, std::size_t N>
constexpr T trace(const matrix<T, N, N>& m) noexcept;
/**
* Translates a matrix.
*
* @param m Matrix to translate.
* @param v Translation vector.
*
* @return Translated matrix.
*/
template <class T>
@ -942,6 +965,19 @@ constexpr matrix sub(T a, const matrix& b) noexcept
return sub(a, b, std::make_index_sequence<N>{});
}
/// @private
template <class T, std::size_t N, std::size_t... I>
constexpr inline T trace(const matrix<T, N, N>& m, std::index_sequence<I...>) noexcept
{
return ((m[I][I]) + ...);
}
template <class T, std::size_t N>
constexpr T trace(const matrix<T, N, N>& m) noexcept
{
return trace(m, std::make_index_sequence<N>{});
}
template <class T>
constexpr matrix<T, 4, 4> translate(const matrix<T, 4, 4>& m, const vector<T, 3>& v)
{
@ -1079,6 +1115,7 @@ constexpr inline matrix operator-(T a, const matrix& b) noexce
*
* @param a First value.
* @param b Second value.
*
* @return Reference to the first value.
*/
/// @{
@ -1099,6 +1136,7 @@ constexpr inline matrix& operator+=(matrix& a, T b) noexcept
*
* @param a First value.
* @param b Second value.
*
* @return Reference to the first value.
*/
/// @{
@ -1119,11 +1157,12 @@ constexpr inline matrix& operator-=(matrix& a, T b) noexcept
*
* @param a First value.
* @param b Second value.
*
* @return Reference to the first value.
*/
/// @{
template <class T, std::size_t N>
constexpr inline matrix<T, N, N>& operator*=(matrix<T, N, N>& a, matrix<T, N, N>& b) noexcept
constexpr inline matrix<T, N, N>& operator*=(matrix<T, N, N>& a, const matrix<T, N, N>& b) noexcept
{
return (a = a * b);
}
@ -1139,6 +1178,7 @@ constexpr inline matrix& operator*=(matrix& a, T b) noexcept
*
* @param a First value.
* @param b Second value.
*
* @return Reference to the first value.
*/
/// @{
@ -1159,6 +1199,7 @@ constexpr inline matrix& operator/=(matrix& a, T b) noexcept
*
* @param os Output stream.
* @param m Matrix.
*
* @return Output stream.
*/
template <class T, std::size_t N, std::size_t M>
@ -1179,6 +1220,7 @@ std::ostream& operator<<(std::ostream& os, const matrix& m)
*
* @param is Input stream.
* @param m Matrix.
*
* @return Input stream.
*/
template <class T, std::size_t N, std::size_t M>

+ 0
- 4
src/math/operators.hpp View File

@ -20,10 +20,6 @@
#ifndef ANTKEEPER_MATH_OPERATORS_HPP
#define ANTKEEPER_MATH_OPERATORS_HPP
#include "math/quaternion-operators.hpp"
#include "math/transform-operators.hpp"
#include "math/stream-operators.hpp"
namespace math {
/// Mathematical operators.

+ 0
- 33
src/math/polynomial.hpp View File

@ -52,39 +52,6 @@ T horner(InputIt first, InputIt last, T x)
*/
namespace chebyshev {
/**
* Generates a Chebyshev approximation of a function.
*
* @param[out] first,last Range of Chebyshev polynomial coefficients.
* @param[in] f Unary function to approximate.
* @param[in] min,max Domain of @p f.
*/
template <class OutputIt, class UnaryOp, class T>
void approximate(OutputIt first, OutputIt last, UnaryOp f, T min, T max)
{
std::size_t n = last - first;
const T two_over_n = T(2) / static_cast<T>(n);
const T pi_over_n = math::pi<T> / static_cast<T>(n);
last = first;
for (std::size_t i = 0; i < n; ++i)
*(last++) = T(0);
for (std::size_t i = 0; i < n; ++i)
{
const T y = pi_over_n * (static_cast<T>(i) + T(0.5));
T x = f(math::map<T>(std::cos(y), T(-1), T(1), min, max)) * two_over_n;
*first += x;
last = first;
for (std::size_t j = 1; j < n; ++j)
{
*(++last) += x * std::cos(y * static_cast<T>(j));
}
}
}
/**
* Evaluates a Chebyshev polynomial.
*

+ 0
- 510
src/math/quaternion-functions.hpp View File

@ -1,510 +0,0 @@
/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ANTKEEPER_MATH_QUATERNION_FUNCTIONS_HPP
#define ANTKEEPER_MATH_QUATERNION_FUNCTIONS_HPP
#include "math/constants.hpp"
#include "math/matrix.hpp"
#include "math/quaternion-type.hpp"
#include "math/vector.hpp"
#include <cmath>
namespace math {
/**
* Adds two quaternions.
*
* @param x First quaternion.
* @param y Second quaternion.
* @return Sum of the two quaternions.
*/
template <class T>
quaternion<T> add(const quaternion<T>& x, const quaternion<T>& y);
/**
* Calculates the conjugate of a quaternion.
*
* @param x Quaternion from which the conjugate will be calculated.
* @return Conjugate of the quaternion.
*/
template <class T>
quaternion<T> conjugate(const quaternion<T>& x);
/**
* Calculates the dot product of two quaternions.
*
* @param x First quaternion.
* @param y Second quaternion.
* @return Dot product of the two quaternions.
*/
template <class T>
T dot(const quaternion<T>& x, const quaternion<T>& y);
/**
* Divides a quaternion by a scalar.
*
* @param q Quaternion.
* @param s Scalar.
* @return Result of the division.
*/
template <class T>
quaternion<T> div(const quaternion<T>& q, T s);
/**
* Calculates the length of a quaternion.
*
* @param x Quaternion to calculate the length of.
* @return Length of the quaternion.
*/
template <class T>
T length(const quaternion<T>& x);
/**
* Calculates the squared length of a quaternion. The squared length can be calculated faster than the length because a call to `std::sqrt` is saved.
*
* @param x Quaternion to calculate the squared length of.
* @return Squared length of the quaternion.
*/
template <class T>
T length_squared(const quaternion<T>& x);
/**
* Performs linear interpolation between two quaternions.
*
* @param x First quaternion.
* @param y Second quaternion.
* @param a Interpolation factor.
* @return Interpolated quaternion.
*/
template <class T>
quaternion<T> lerp(const quaternion<T>& x, const quaternion<T>& y, T a);
/**
* Creates a unit quaternion rotation using forward and up vectors.
*
* @param forward Unit forward vector.
* @param up Unit up vector.
* @return Unit rotation quaternion.
*/
template <class T>
quaternion<T> look_rotation(const vector<T, 3>& forward, vector<T, 3> up);
/**
* Converts a quaternion to a rotation matrix.
*
* @param q Unit quaternion.
* @return Matrix representing the rotation described by `q`.
*/
template <class T>
matrix<T, 3, 3> matrix_cast(const quaternion<T>& q);
/**
* Multiplies two quaternions.
*
* @param x First quaternion.
* @param y Second quaternion.
* @return Product of the two quaternions.
*/
template <class T>
quaternion<T> mul(const quaternion<T>& x, const quaternion<T>& y);
/**
* Multiplies a quaternion by a scalar.
*
* @param q Quaternion.
* @param s Scalar.
* @return Product of the quaternion and scalar.
*/
template <class T>
quaternion<T> mul(const quaternion<T>& q, T s);
/**
* Rotates a 3-dimensional vector by a quaternion.
*
* @param q Unit quaternion.
* @param v Vector.
* @return Rotated vector.
*/
template <class T>
vector<T, 3> mul(const quaternion<T>& q, const vector<T, 3>& v);
/**
* Negates a quaternion.
*/
template <class T>
quaternion<T> negate(const quaternion<T>& x);
/**
* Performs normalized linear interpolation between two quaternions.
*
* @param x First quaternion.
* @param y Second quaternion.
* @param a Interpolation factor.
* @return Interpolated quaternion.
*/
template <class T>
quaternion<T> nlerp(const quaternion<T>& x, const quaternion<T>& y, T a);
/**
* Normalizes a quaternion.
*/
template <class T>
quaternion<T> normalize(const quaternion<T>& x);
/**
* Creates a rotation from an angle and axis.
*
* @param angle Angle of rotation (in radians).
* @param axis Axis of rotation
* @return Quaternion representing the rotation.
*/
template <class T>
quaternion<T> angle_axis(T angle, const vector<T, 3>& axis);
/**
* Calculates the minimum rotation between two normalized direction vectors.
*
* @param source Normalized source direction.
* @param destination Normalized destination direction.
* @return Quaternion representing the minimum rotation between the source and destination vectors.
*/
template <class T>
quaternion<T> rotation(const vector<T, 3>& source, const vector<T, 3>& destination);
/**
* Performs spherical linear interpolation between two quaternions.
*
* @param x First quaternion.
* @param y Second quaternion.
* @param a Interpolation factor.
* @return Interpolated quaternion.
*/
template <class T>
quaternion<T> slerp(const quaternion<T>& x, const quaternion<T>& y, T a);
/**
* Subtracts a quaternion from another quaternion.
*
* @param x First quaternion.
* @param y Second quaternion.
* @return Difference between the quaternions.
*/
template <class T>
quaternion<T> sub(const quaternion<T>& x, const quaternion<T>& y);
/**
* Decomposes a quaternion into swing and twist rotation components.
*
* @param[in] q Quaternion to decompose.
* @param[in] a Axis of twist rotation.
* @param[out] swing Swing rotation component.
* @param[out] twist Twist rotation component.
* @param[in] epsilon Threshold at which a number is considered zero.
*
* @see https://www.euclideanspace.com/maths/geometry/rotations/for/decomposition/
*/
template <class T>
void swing_twist(const quaternion<T>& q, const vector<T, 3>& a, quaternion<T>& qs, quaternion<T>& qt, T epsilon = T(1e-6));
/**
* Converts a 3x3 rotation matrix to a quaternion.
*
* @param m Rotation matrix.
* @return Unit quaternion representing the rotation described by `m`.
*/
template <class T>
quaternion<T> quaternion_cast(const matrix<T, 3, 3>& m);
/**
* Types casts each quaternion component and returns a quaternion of the casted type.
*
* @tparam T2 Target quaternion component type.
* @tparam T1 Source quaternion component type.
* @param q Quaternion to type cast.
* @return Type-casted quaternion.
*/
template <class T2, class T1>
quaternion<T2> type_cast(const quaternion<T1>& q);
template <class T>
inline quaternion<T> add(const quaternion<T>& x, const quaternion<T>& y)
{
return {x.w + y.w, x.x + y.x, x.y + y.y, x.z + y.z};
}
template <class T>
inline quaternion<T> conjugate(const quaternion<T>& x)
{
return {x.w, -x.x, -x.y, -x.z};
}
template <class T>
inline T dot(const quaternion<T>& x, const quaternion<T>& y)
{
return {x.w * y.w + x.x * y.x + x.y * y.y + x.z * y.z};
}
template <class T>
inline quaternion<T> div(const quaternion<T>& q, T s)
{
return {q.w / s, q.x / s, q.y / s, q.z / s}
}
template <class T>
inline T length(const quaternion<T>& x)
{
return std::sqrt(x.w * x.w + x.x * x.x + x.y * x.y + x.z * x.z);
}
template <class T>
inline T length_squared(const quaternion<T>& x)
{
return x.w * x.w + x.x * x.x + x.y * x.y + x.z * x.z;
}
template <class T>
inline quaternion<T> lerp(const quaternion<T>& x, const quaternion<T>& y, T a)
{
return
{
(y.w - x.w) * a + x.w,
(y.x - x.x) * a + x.x,
(y.y - x.y) * a + x.y,
(y.z - x.z) * a + x.z
};
}
template <class T>
quaternion<T> look_rotation(const vector<T, 3>& forward, vector<T, 3> up)
{
vector<T, 3> right = normalize(cross(forward, up));
up = cross(right, forward);
matrix<T, 3, 3> m =
{
right,
up,
-forward
};
// Convert to quaternion
return normalize(quaternion_cast(m));
}
template <class T>
matrix<T, 3, 3> matrix_cast(const quaternion<T>& q)
{
const T xx = q.x * q.x;
const T xy = q.x * q.y;
const T xz = q.x * q.z;
const T xw = q.x * q.w;
const T yy = q.y * q.y;
const T yz = q.y * q.z;
const T yw = q.y * q.w;
const T zz = q.z * q.z;
const T zw = q.z * q.w;
return
{
T(1) - (yy + zz) * T(2), (xy + zw) * T(2), (xz - yw) * T(2),
(xy - zw) * T(2), T(1) - (xx + zz) * T(2), (yz + xw) * T(2),
(xz + yw) * T(2), (yz - xw) * T(2), T(1) - (xx + yy) * T(2)
};
}
template <class T>
quaternion<T> mul(const quaternion<T>& x, const quaternion<T>& y)
{
return
{
-x.x * y.x - x.y * y.y - x.z * y.z + x.w * y.w,
x.x * y.w + x.y * y.z - x.z * y.y + x.w * y.x,
-x.x * y.z + x.y * y.w + x.z * y.x + x.w * y.y,
x.x * y.y - x.y * y.x + x.z * y.w + x.w * y.z
};
}
template <class T>
inline quaternion<T> mul(const quaternion<T>& q, T s)
{
return {q.w * s, q.x * s, q.y * s, q.z * s};
}
template <class T>
vector<T, 3> mul(const quaternion<T>& q, const vector<T, 3>& v)
{
const vector<T, 3>& i = reinterpret_cast<const vector<T, 3>&>(q.x);
return add(add(mul(i, dot(i, v) * T(2)), mul(v, (q.w * q.w - dot(i, i)))), mul(cross(i, v), q.w * T(2)));
}
template <class T>
inline quaternion<T> negate(const quaternion<T>& x)
{
return {-x.w, -x.x, -x.y, -x.z};
}
template <class T>
quaternion<T> nlerp(const quaternion<T>& x, const quaternion<T>& y, T a)
{
return normalize(add(mul(x, T(1) - a), mul(y, a * std::copysign(T(1), dot(x, y)))));
}
template <class T>
inline quaternion<T> normalize(const quaternion<T>& x)
{
return mul(x, T(1) / length(x));
}
template <class T>
quaternion<T> angle_axis(T angle, const vector<T, 3>& axis)
{
T s = std::sin(angle * T(0.5));
return {static_cast<T>(std::cos(angle * T(0.5))), axis.x() * s, axis.y() * s, axis.z() * s};
}
template <class T>
quaternion<T> rotation(const vector<T, 3>& source, const vector<T, 3>& destination)
{
quaternion<T> q;
q.w = dot(source, destination);
reinterpret_cast<vector<T, 3>&>(q.x) = cross(source, destination);
q.w += length(q);
return normalize(q);
}
template <class T>
quaternion<T> slerp(const quaternion<T>& x, const quaternion<T>& y, T a)
{
T cos_theta = dot(x, y);
constexpr T epsilon = T(0.0005);
if (cos_theta > T(1) - epsilon)
{
return normalize(lerp(x, y, a));
}
cos_theta = std::max<T>(T(-1), std::min<T>(T(1), cos_theta));
T theta = static_cast<T>(std::acos(cos_theta)) * a;
quaternion<T> z = normalize(sub(y, mul(x, cos_theta)));
return add(mul(x, static_cast<T>(std::cos(theta))), mul(z, static_cast<T>(std::sin(theta))));
}
template <class T>
inline quaternion<T> sub(const quaternion<T>& x, const quaternion<T>& y)
{
return {x.w - y.w, x.x - y.x, x.y - y.y, x.z - y.z};
}
template <class T>
void swing_twist(const quaternion<T>& q, const vector<T, 3>& a, quaternion<T>& qs, quaternion<T>& qt, T epsilon)
{
if (q.x * q.x + q.y * q.y + q.z * q.z > epsilon)
{
const vector<T, 3> pa = mul(a, (a.x() * q.x + a.y() * q.y + a.z() * q.z));
qt = normalize(quaternion<T>{q.w, pa.x(), pa.y(), pa.z()});
qs = mul(q, conjugate(qt));
}
else
{
qt = angle_axis(pi<T>, a);
const vector<T, 3> qa = mul(q, a);
const vector<T, 3> sa = cross(a, qa);
if (length_squared(sa) > epsilon)
qs = angle_axis(std::acos(dot(a, qa)), sa);
else
qs = quaternion<T>::identity;
}
}
template <class T>
quaternion<T> quaternion_cast(const matrix<T, 3, 3>& m)
{
T trace = m[0][0] + m[1][1] + m[2][2];
if (trace > T(0))
{
T s = T(0.5) / std::sqrt(trace + T(1));
return
{
T(0.25) / s,
(m[1][2] - m[2][1]) * s,
(m[2][0] - m[0][2]) * s,
(m[0][1] - m[1][0]) * s
};
}
else
{
if (m[0][0] > m[1][1] && m[0][0] > m[2][2])
{
T s = T(2) * std::sqrt(T(1) + m[0][0] - m[1][1] - m[2][2]);
return
{
(m[1][2] - m[2][1]) / s,
T(0.25) * s,
(m[1][0] + m[0][1]) / s,
(m[2][0] + m[0][2]) / s
};
}
else if (m[1][1] > m[2][2])
{
T s = T(2) * std::sqrt(T(1) + m[1][1] - m[0][0] - m[2][2]);
return
{
(m[2][0] - m[0][2]) / s,
(m[1][0] + m[0][1]) / s,
T(0.25) * s,
(m[2][1] + m[1][2]) / s
};
}
else
{
T s = T(2) * std::sqrt(T(1) + m[2][2] - m[0][0] - m[1][1]);
return
{
(m[0][1] - m[1][0]) / s,
(m[2][0] + m[0][2]) / s,
(m[2][1] + m[1][2]) / s,
T(0.25) * s
};
}
}
}
template <class T2, class T1>
inline quaternion<T2> type_cast(const quaternion<T1>& q)
{
return quaternion<T2>
{
static_cast<T2>(q.w),
static_cast<T2>(q.x),
static_cast<T2>(q.y),
static_cast<T2>(q.z)
};
}
} // namespace math
#endif // ANTKEEPER_MATH_QUATERNION_FUNCTIONS_HPP

+ 0
- 97
src/math/quaternion-operators.hpp View File

@ -1,97 +0,0 @@
/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ANTKEEPER_MATH_QUATERNION_OPERATORS_HPP
#define ANTKEEPER_MATH_QUATERNION_OPERATORS_HPP
#include "math/quaternion-type.hpp"
#include "math/quaternion-functions.hpp"
/// @copydoc math::add(const math::quaternion<T>&, const math::quaternion<T>&)
template <class T>
math::quaternion<T> operator+(const math::quaternion<T>& x, const math::quaternion<T>& y);
/// @copydoc math::div(const math::quaternion<T>&, T)
template <class T>
math::quaternion<T> operator/(const math::quaternion<T>& q, T s);
/// @copydoc math::mul(const math::quaternion<T>&, const math::quaternion<T>&)
template <class T>
math::quaternion<T> operator*(const math::quaternion<T>& x, const math::quaternion<T>& y);
/// @copydoc math::mul(const math::quaternion<T>&, T)
template <class T>
math::quaternion<T> operator*(const math::quaternion<T>& q, T s);
/// @copydoc math::mul(const math::quaternion<T>&, const math::vector<T, 3>&)
template <class T>
math::vector<T, 3> operator*(const math::quaternion<T>& q, const math::vector<T, 3>& v);
/// @copydoc math::sub(const math::quaternion<T>&, const math::quaternion<T>&)
template <class T>
math::quaternion<T> operator-(const math::quaternion<T>& x, const math::quaternion<T>& y);
/// @copydoc math::negate(const math::quaternion<T>&)
template <class T, std::size_t N>
math::quaternion<T> operator-(const math::quaternion<T>& x);
template <class T>
inline math::quaternion<T> operator+(const math::quaternion<T>& x, const math::quaternion<T>& y)
{
return add(x, y);
}
template <class T>
inline math::quaternion<T> operator/(const math::quaternion<T>& q, T s)
{
return div(q, s);
}
template <class T>
inline math::quaternion<T> operator*(const math::quaternion<T>& x, const math::quaternion<T>& y)
{
return mul(x, y);
}
template <class T>
inline math::quaternion<T> operator*(const math::quaternion<T>& q, T s)
{
return mul(q, s);
}
template <class T>
inline math::vector<T, 3> operator*(const math::quaternion<T>& q, const math::vector<T, 3>& v)
{
return mul(q, v);
}
template <class T>
inline math::quaternion<T> operator-(const math::quaternion<T>& x, const math::quaternion<T>& y)
{
return sub(x, y);
}
template <class T, std::size_t N>
inline math::quaternion<T> operator-(const math::quaternion<T>& x)
{
return negate(x);
}
#endif // ANTKEEPER_MATH_QUATERNION_OPERATORS_HPP

+ 0
- 92
src/math/quaternion-type.hpp View File

@ -1,92 +0,0 @@
/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ANTKEEPER_MATH_QUATERNION_TYPE_HPP
#define ANTKEEPER_MATH_QUATERNION_TYPE_HPP
#include <cmath>
namespace math {
/**
* A quaternion type is a tuple made of a scalar (real) part and vector (imaginary) part.
*
* @tparam T Scalar type.
*/
template <class T>
struct quaternion
{
typedef T scalar_type;
scalar_type w;
scalar_type x;
scalar_type y;
scalar_type z;
/// Rotation identity quaternion.
static const quaternion identity;
/**
* Returns a quaternion representing a rotation about the x-axis.
*
* @param angle Angle of rotation, in radians.
* @return Quaternion representing an x-axis rotation.
*/
static quaternion rotate_x(scalar_type angle);
/**
* Returns a quaternion representing a rotation about the y-axis.
*
* @param angle Angle of rotation, in radians.
* @return Quaternion representing an y-axis rotation.
*/
static quaternion rotate_y(scalar_type angle);
/**
* Returns a quaternion representing a rotation about the z-axis.
*
* @param angle Angle of rotation, in radians.
* @return Quaternion representing an z-axis rotation.
*/
static quaternion rotate_z(scalar_type angle);
};
template <class T>
constexpr quaternion<T> quaternion<T>::identity = {T(1), T(0), T(0), T(0)};
template <class T>
quaternion<T> quaternion<T>::rotate_x(scalar_type angle)
{
return {std::cos(angle * T(0.5)), std::sin(angle * T(0.5)), T(0), T(0)};
}
template <class T>
quaternion<T> quaternion<T>::rotate_y(scalar_type angle)
{
return {std::cos(angle * T(0.5)), T(0), std::sin(angle * T(0.5)), T(0)};
}
template <class T>
quaternion<T> quaternion<T>::rotate_z(scalar_type angle)
{
return {std::cos(angle * T(0.5)), T(0), T(0), std::sin(angle * T(0.5))};
}
} // namespace math
#endif // ANTKEEPER_MATH_QUATERNION_TYPE_HPP

+ 959
- 0
src/math/quaternion.hpp View File

@ -0,0 +1,959 @@
/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ANTKEEPER_MATH_QUATERNION_HPP
#define ANTKEEPER_MATH_QUATERNION_HPP
#include "math/constants.hpp"
#include "math/matrix.hpp"
#include "math/vector.hpp"
#include <cmath>
#include <istream>
#include <ostream>
namespace math {
/**
* A quaternion type is a tuple made of a scalar (real) part and vector (imaginary) part.
*
* @tparam T Scalar type.
*/
template <class T>
struct quaternion
{
/// Scalar type.
typedef T scalar_type;
/// Vector type.
typedef vector<T, 3> vector_type;
/// Rotation matrix type.
typedef matrix<T, 3, 3> matrix_type;
/// Quaternion real part.
scalar_type r;
/// Quaternion imaginary part.
vector_type i;
/// Returns a reference to the quaternion real part.
/// @{
constexpr inline scalar_type& w() noexcept
{
return r;
}
constexpr inline const scalar_type& w() const noexcept
{
return r;
}
/// @}
/// Returns a reference to the first element of the quaternion imaginary part.
/// @{
constexpr inline scalar_type& x() noexcept
{
return i.x();
}
constexpr inline const scalar_type& x() const noexcept
{
return i.x();
}
/// @}
/// Returns a reference to the second element of the quaternion imaginary part.
/// @{
constexpr inline scalar_type& y() noexcept
{
return i.y();
}
constexpr inline const scalar_type& y() const noexcept
{
return i.y();
}
/// @}
/// Returns a reference to the third element of the quaternion imaginary part.
/// @{
constexpr inline scalar_type& z() noexcept
{
return i.z();
}
constexpr inline const scalar_type& z() const noexcept
{
return i.z();
}
/// @}
/**
* Returns a quaternion representing a rotation about the x-axis.
*
* @param angle Angle of rotation, in radians.
*
* @return Quaternion representing an x-axis rotation.
*/
static quaternion rotate_x(scalar_type angle)
{
return {std::cos(angle * T(0.5)), std::sin(angle * T(0.5)), T(0), T(0)};
}
/**
* Returns a quaternion representing a rotation about the y-axis.
*
* @param angle Angle of rotation, in radians.
*
* @return Quaternion representing an y-axis rotation.
*/
static quaternion rotate_y(scalar_type angle)
{
return {std::cos(angle * T(0.5)), T(0), std::sin(angle * T(0.5)), T(0)};
}
/**
* Returns a quaternion representing a rotation about the z-axis.
*
* @param angle Angle of rotation, in radians.
* @return Quaternion representing an z-axis rotation.
*/
static quaternion rotate_z(scalar_type angle)
{
return {std::cos(angle * T(0.5)), T(0), T(0), std::sin(angle * T(0.5))};
}
/**
* Type-casts the quaternion scalars using `static_cast`.
*
* @tparam U Target scalar type.
*
* @return Type-casted quaternion.
*/
template <class U>
constexpr inline explicit operator quaternion<U>() const noexcept
{
return {static_cast<U>(r), vector<U, 3>(i)};
}
/**
* Casts the quaternion to a 4-element vector, with the real part as the first element and the imaginary part as the following three elements.
*
* @return Vector containing the real and imaginary parts of the quaternion.
*/
constexpr inline explicit operator vector<T, 4>() const noexcept
{
return {r, i[0], i[1], i[2]};
}
/// Returns a zero quaternion, where every scalar is equal to zero.
static constexpr quaternion zero() noexcept
{
return {};
}
/// Returns a rotation identity quaternion.
static constexpr quaternion identity() noexcept
{
return {T{1}, vector_type::zero()};
}
};
/**
* Adds two quaternions.
*
* @param a First quaternion.
* @param b Second quaternion.
*
* @return Sum of the two quaternions.
*/
template <class T>
constexpr quaternion<T> add(const quaternion<T>& a, const quaternion<T>& b) noexcept;
/**
* Adds a quaternion and a scalar.
*
* @param a First value.
* @param b Second second value.
*
* @return Sum of the quaternion and scalar.
*/
template <class T>
constexpr quaternion<T> add(const quaternion<T>& a, T b) noexcept;
/**
* Calculates the conjugate of a quaternion.
*
* @param q Quaternion from which the conjugate will be calculated.
*
* @return Conjugate of the quaternion.
*/
template <class T>
constexpr quaternion<T> conjugate(const quaternion<T>& q) noexcept;
/**
* Calculates the dot product of two quaternions.
*
* @param a First quaternion.
* @param b Second quaternion.
*
* @return Dot product of the two quaternions.
*/
template <class T>
constexpr T dot(const quaternion<T>& a, const quaternion<T>& b) noexcept;
/**
* Divides a quaternion by another quaternion.
*
* @param a First value.
* @param b Second value.
*
* @return Result of the division.
*/
template <class T>
constexpr quaternion<T> div(const quaternion<T>& a, const quaternion<T>& b) noexcept;
/**
* Divides a quaternion by a scalar.
*
* @param a Quaternion.
* @param b Scalar.
*
* @return Result of the division.
*/
template <class T>
constexpr quaternion<T> div(const quaternion<T>& a, T b) noexcept;
/**
* Divides a scalar by a quaternion.
*
* @param a Scalar.
* @param b Quaternion.
*
* @return Result of the division.
*/
template <class T>
constexpr quaternion<T> div(T a, const quaternion<T>& b) noexcept;
/**
* Calculates the length of a quaternion.
*
* @param q Quaternion to calculate the length of.
*
* @return Length of the quaternion.
*/
template <class T>
T length(const quaternion<T>& q);
/**
* Calculates the squared length of a quaternion. The squared length can be calculated faster than the length because a call to `std::sqrt` is saved.
*
* @param q Quaternion to calculate the squared length of.
*
* @return Squared length of the quaternion.
*/
template <class T>
constexpr T length_squared(const quaternion<T>& q) noexcept;
/**
* Performs linear interpolation between two quaternions.
*
* @param a First quaternion.
* @param b Second quaternion.
* @param t Interpolation factor.
*
* @return Interpolated quaternion.
*/
template <class T>
constexpr quaternion<T> lerp(const quaternion<T>& a, const quaternion<T>& b, T t) noexcept;
/**
* Creates a unit quaternion rotation using forward and up vectors.
*
* @param forward Unit forward vector.
* @param up Unit up vector.
*
* @return Unit rotation quaternion.
*/
template <class T>
quaternion<T> look_rotation(const vector<T, 3>& forward, vector<T, 3> up);
/**
* Converts a quaternion to a rotation matrix.
*
* @param q Unit quaternion.
*
* @return Matrix representing the rotation described by `q`.
*/
template <class T>
constexpr matrix<T, 3, 3> matrix_cast(const quaternion<T>& q) noexcept;
/**
* Multiplies two quaternions.
*
* @param a First quaternion.
* @param b Second quaternion.
*
* @return Product of the two quaternions.
*/
template <class T>
constexpr quaternion<T> mul(const quaternion<T>& a, const quaternion<T>& b) noexcept;
/**
* Multiplies a quaternion by a scalar.
*
* @param a First value.
* @param b Second value.
*
* @return Product of the quaternion and scalar.
*/
template <class T>
constexpr quaternion<T> mul(const quaternion<T>& a, T b) noexcept;
/**
* Calculates the product of a quaternion and a vector.
*
* @param a First value.
* @param b second value.
*
* @return Product of the quaternion and vector.
*/
/// @{
template <class T>
constexpr vector<T, 3> mul(const quaternion<T>& a, const vector<T, 3>& b) noexcept;
template <class T>
constexpr vector<T, 3> mul(const vector<T, 3>& a, const quaternion<T>& b) noexcept;
/// @}
/**
* Negates a quaternion.
*
* @param q Quaternion to negate.
*
* @return Negated quaternion.
*/
template <class T>
constexpr quaternion<T> negate(const quaternion<T>& q) noexcept;
/**
* Performs normalized linear interpolation between two quaternions.
*
* @param a First quaternion.
* @param b Second quaternion.
* @param t Interpolation factor.
*
* @return Interpolated quaternion.
*/
template <class T>
quaternion<T> nlerp(const quaternion<T>& a, const quaternion<T>& b, T t);
/**
* Normalizes a quaternion.
*
* @param q Quaternion to normalize.
*
* @return Normalized quaternion.
*/
template <class T>
quaternion<T> normalize(const quaternion<T>& q);
/**
* Creates a rotation from an angle and axis.
*
* @param angle Angle of rotation (in radians).
* @param axis Axis of rotation
*
* @return Quaternion representing the rotation.
*/
template <class T>
quaternion<T> angle_axis(T angle, const vector<T, 3>& axis);
/**
* Calculates the minimum rotation between two normalized direction vectors.
*
* @param source Normalized source direction.
* @param destination Normalized destination direction.
*
* @return Quaternion representing the minimum rotation between the source and destination vectors.
*/
template <class T>
quaternion<T> rotation(const vector<T, 3>& source, const vector<T, 3>& destination);
/**
* Performs spherical linear interpolation between two quaternions.
*
* @param a First quaternion.
* @param b Second quaternion.
* @param t Interpolation factor.
*
* @return Interpolated quaternion.
*/
template <class T>
quaternion<T> slerp(const quaternion<T>& a, const quaternion<T>& b, T t, T error = T{1e-6});
/**
* Subtracts a quaternion from another quaternion.
*
* @param a First quaternion.
* @param b Second quaternion.
*
* @return Difference between the quaternions.
*/
template <class T>
constexpr quaternion<T> sub(const quaternion<T>& a, const quaternion<T>& b) noexcept;
/**
* Subtracts a quaternion and a scalar.
*
* @param a First value.
* @param b Second second.
*
* @return Difference between the quaternion and scalar.
*/
/// @{
template <class T>
constexpr quaternion<T> sub(const quaternion<T>& a, T b) noexcept;
template <class T>
constexpr quaternion<T> sub(T a, const quaternion<T>& b) noexcept;
/// @}
/**
* Decomposes a quaternion into swing and twist rotation components.
*
* @param[in] q Quaternion to decompose.
* @param[in] a Axis of twist rotation.
* @param[out] swing Swing rotation component.
* @param[out] twist Twist rotation component.
* @param[in] error Threshold at which a number is considered zero.
*
* @see https://www.euclideanspace.com/maths/geometry/rotations/for/decomposition/
*/
template <class T>
void swing_twist(const quaternion<T>& q, const vector<T, 3>& a, quaternion<T>& qs, quaternion<T>& qt, T error = T{1e-6});
/**
* Converts a 3x3 rotation matrix to a quaternion.
*
* @param m Rotation matrix.
*
* @return Unit quaternion representing the rotation described by @p m.
*/
template <class T>
quaternion<T> quaternion_cast(const matrix<T, 3, 3>& m);
template <class T>
constexpr inline quaternion<T> add(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return {a.r + b.r, a.i + b.i};
}
template <class T>
constexpr inline quaternion<T> add(const quaternion<T>& a, T b) noexcept
{
return {a.r + b, a.i + b};
}
template <class T>
constexpr inline quaternion<T> conjugate(const quaternion<T>& q) noexcept
{
return {q.r, -q.i};
}
template <class T>
constexpr inline T dot(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return a.r * b.r + dot(a.i, b.i);
}
template <class T>
constexpr inline quaternion<T> div(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return {a.r / b.r, a.i / b.i};
}
template <class T>
constexpr inline quaternion<T> div(const quaternion<T>& a, T b) noexcept
{
return {a.r / b, a.i / b};
}
template <class T>
constexpr inline quaternion<T> div(T a, const quaternion<T>& b) noexcept
{
return {a / b.r, a / b.i};
}
template <class T>
inline T length(const quaternion<T>& q)
{
return std::sqrt(length_squared(q));
}
template <class T>
constexpr inline T length_squared(const quaternion<T>& q) noexcept
{
return q.r * q.r + length_squared(q.i);
}
template <class T>
constexpr inline quaternion<T> lerp(const quaternion<T>& a, const quaternion<T>& b, T t) noexcept
{
return
{
(b.r - a.r) * t + a.r,
(b.i - a.i) * t + a.i
};
}
template <class T>
quaternion<T> look_rotation(const vector<T, 3>& forward, vector<T, 3> up)
{
vector<T, 3> right = normalize(cross(forward, up));
up = cross(right, forward);
matrix<T, 3, 3> m =
{
right,
up,
-forward
};
// Convert to quaternion
return normalize(quaternion_cast(m));
}
template <class T>
constexpr matrix<T, 3, 3> matrix_cast(const quaternion<T>& q) noexcept
{
const T xx = q.x() * q.x();
const T xy = q.x() * q.y();
const T xz = q.x() * q.z();
const T xw = q.x() * q.w();
const T yy = q.y() * q.y();
const T yz = q.y() * q.z();
const T yw = q.y() * q.w();
const T zz = q.z() * q.z();
const T zw = q.z() * q.w();
return
{
T(1) - (yy + zz) * T(2), (xy + zw) * T(2), (xz - yw) * T(2),
(xy - zw) * T(2), T(1) - (xx + zz) * T(2), (yz + xw) * T(2),
(xz + yw) * T(2), (yz - xw) * T(2), T(1) - (xx + yy) * T(2)
};
}
template <class T>
constexpr quaternion<T> mul(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return
{
-a.x() * b.x() - a.y() * b.y() - a.z() * b.z() + a.w() * b.w(),
a.x() * b.w() + a.y() * b.z() - a.z() * b.y() + a.w() * b.x(),
-a.x() * b.z() + a.y() * b.w() + a.z() * b.x() + a.w() * b.y(),
a.x() * b.y() - a.y() * b.x() + a.z() * b.w() + a.w() * b.z()
};
}
template <class T>
constexpr inline quaternion<T> mul(const quaternion<T>& a, T b) noexcept
{
return {a.r * b, a.i * b};
}
template <class T>
constexpr vector<T, 3> mul(const quaternion<T>& a, const vector<T, 3>& b) noexcept
{
return a.i * dot(a.i, b) * T(2) + b * (a.r * a.r - length_squared(a.i)) + cross(a.i, b) * a.r * T(2);
}
template <class T>
constexpr inline vector<T, 3> mul(const vector<T, 3>& a, const quaternion<T>& b) noexcept
{
return mul(conjugate(b), a);
}
template <class T>
constexpr inline quaternion<T> negate(const quaternion<T>& q) noexcept
{
return {-q.r, -q.i};
}
template <class T>
quaternion<T> nlerp(const quaternion<T>& a, const quaternion<T>& b, T t)
{
return normalize(add(mul(a, T(1) - t), mul(b, t * std::copysign(T(1), dot(a, b)))));
}
template <class T>
inline quaternion<T> normalize(const quaternion<T>& q)
{
return mul(q, T(1) / length(q));
}
template <class T>
quaternion<T> angle_axis(T angle, const vector<T, 3>& axis)
{
angle *= T{0.5};
return {std::cos(angle), axis * std::sin(angle)};
}
template <class T>
quaternion<T> rotation(const vector<T, 3>& source, const vector<T, 3>& destination)
{
quaternion<T> q = {dot(source, destination), cross(source, destination)};
q.w() += length(q);
return normalize(q);
}
template <class T>
quaternion<T> slerp(const quaternion<T>& a, const quaternion<T>& b, T t, T error)
{
T cos_theta = dot(a, b);
if (cos_theta > T(1) - error)
return normalize(lerp(a, b, t));
cos_theta = std::max<T>(T(-1), std::min<T>(T(1), cos_theta));
const T theta = std::acos(cos_theta) * t;
quaternion<T> c = normalize(sub(b, mul(a, cos_theta)));
return add(mul(a, std::cos(theta)), mul(c, std::sin(theta)));
}
template <class T>
constexpr inline quaternion<T> sub(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return {a.r - b.r, a.i - b.i};
}
template <class T>
constexpr inline quaternion<T> sub(const quaternion<T>& a, T b) noexcept
{
return {a.r - b, a.i - b};
}
template <class T>
constexpr inline quaternion<T> sub(T a, const quaternion<T>& b) noexcept
{
return {a - b.r, a - b.i};
}
template <class T>
void swing_twist(const quaternion<T>& q, const vector<T, 3>& a, quaternion<T>& qs, quaternion<T>& qt, T error)
{
if (length_squared(q.i) > error)
{
qt = normalize(quaternion<T>{q.w(), a * dot(a, q.i)});
qs = mul(q, conjugate(qt));
}
else
{
qt = angle_axis(pi<T>, a);
const vector<T, 3> qa = mul(q, a);
const vector<T, 3> sa = cross(a, qa);
if (length_squared(sa) > error)
qs = angle_axis(std::acos(dot(a, qa)), sa);
else
qs = quaternion<T>::identity();
}
}
template <class T>
quaternion<T> quaternion_cast(const matrix<T, 3, 3>& m)
{
const T t = trace(m);
if (t > T(0))
{
T s = T(0.5) / std::sqrt(t + T(1));
return
{
T(0.25) / s,
(m[1][2] - m[2][1]) * s,
(m[2][0] - m[0][2]) * s,
(m[0][1] - m[1][0]) * s
};
}
else
{
if (m[0][0] > m[1][1] && m[0][0] > m[2][2])
{
T s = T(2) * std::sqrt(T(1) + m[0][0] - m[1][1] - m[2][2]);
return
{
(m[1][2] - m[2][1]) / s,
T(0.25) * s,
(m[1][0] + m[0][1]) / s,
(m[2][0] + m[0][2]) / s
};
}
else if (m[1][1] > m[2][2])
{
T s = T(2) * std::sqrt(T(1) + m[1][1] - m[0][0] - m[2][2]);
return
{
(m[2][0] - m[0][2]) / s,
(m[1][0] + m[0][1]) / s,
T(0.25) * s,
(m[2][1] + m[1][2]) / s
};
}
else
{
T s = T(2) * std::sqrt(T(1) + m[2][2] - m[0][0] - m[1][1]);
return
{
(m[0][1] - m[1][0]) / s,
(m[2][0] + m[0][2]) / s,
(m[2][1] + m[1][2]) / s,
T(0.25) * s
};
}
}
}
namespace operators {
/// @copydoc add(const quaternion<T>&, const quaternion<T>&)
template <class T>
constexpr inline quaternion<T> operator+(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return add(a, b);
}
/// @copydoc add(const quaternion<T>&, T)
/// @{
template <class T>
constexpr inline quaternion<T> operator+(const quaternion<T>& a, T b) noexcept
{
return add(a, b);
}
template <class T>
constexpr inline quaternion<T> operator+(T a, const quaternion<T>& b) noexcept
{
return add(b, a);
}
/// @}
/// @copydoc div(const quaternion<T>&, const quaternion<T>&)
template <class T>
constexpr inline quaternion<T> operator/(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return div(a, b);
}
/// @copydoc div(const quaternion<T>&, T)
template <class T>
constexpr inline quaternion<T> operator/(const quaternion<T>& a, T b) noexcept
{
return div(a, b);
}
/// @copydoc div(T, const quaternion<T>&)
template <class T>
constexpr inline quaternion<T> operator/(T a, const quaternion<T>& b) noexcept
{
return div(a, b);
}
/// @copydoc mul(const quaternion<T>&, const quaternion<T>&)
template <class T>
constexpr inline quaternion<T> operator*(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return mul(a, b);
}
/// @copydoc mul(const quaternion<T>&, T)
/// @{
template <class T>
constexpr inline quaternion<T> operator*(const quaternion<T>& a, T b) noexcept
{
return mul(a, b);
}
template <class T>
constexpr inline quaternion<T> operator*(T a, const quaternion<T>& b) noexcept
{
return mul(b, a);
}
/// @}
/// @copydoc mul(const quaternion<T>&, const vector<T, 3>&)
template <class T>
constexpr inline vector<T, 3> operator*(const quaternion<T>& a, const vector<T, 3>& b) noexcept
{
return mul(a, b);
}
/// @copydoc mul(const vector<T, 3>&, const quaternion<T>&)
template <class T>
constexpr inline vector<T, 3> operator*(const vector<T, 3>& a, const quaternion<T>& b) noexcept
{
return mul(a, b);
}
/// @copydoc sub(const quaternion<T>&, const quaternion<T>&)
template <class T>
constexpr inline quaternion<T> operator-(const quaternion<T>& a, const quaternion<T>& b) noexcept
{
return sub(a, b);
}
/// @copydoc sub(const quaternion<T>&, T)
/// @{
template <class T>
constexpr inline quaternion<T> operator-(const quaternion<T>& a, T b) noexcept
{
return sub(a, b);
}
template <class T>
constexpr inline quaternion<T> operator-(T a, const quaternion<T>& b) noexcept
{
return sub(a, b);
}
/// @}
/// @copydoc negate(const quaternion<T>&)
template <class T>
constexpr inline quaternion<T> operator-(const quaternion<T>& q) noexcept
{
return negate(q);
}
/**
* Adds two values and stores the result in the first value.
*
* @param a First value.
* @param b Second value.
*
* @return Reference to the first value.
*/
/// @{
template <class T>
constexpr inline quaternion<T>& operator+=(quaternion<T>& a, const quaternion<T>& b) noexcept
{
return (a = a + b);
}
template <class T>
constexpr inline quaternion<T>& operator+=(quaternion<T>& a, T b) noexcept
{
return (a = a + b);
}
/// @}
/**
* Subtracts the first value by the second value and stores the result in the first value.
*
* @param a First value.
* @param b Second value.
*
* @return Reference to the first value.
*/
/// @{
template <class T>
constexpr inline quaternion<T>& operator-=(quaternion<T>& a, const quaternion<T>& b) noexcept
{
return (a = a - b);
}
template <class T>
constexpr inline quaternion<T>& operator-=(quaternion<T>& a, T b) noexcept
{
return (a = a - b);
}
/// @}
/**
* Multiplies two values and stores the result in the first value.
*
* @param a First value.
* @param b Second value.
*
* @return Reference to the first value.
*/
/// @{
template <class T>
constexpr inline quaternion<T>& operator*=(quaternion<T>& a, const quaternion<T>& b) noexcept
{
return (a = a * b);
}
template <class T>
constexpr inline quaternion<T>& operator*=(quaternion<T>& a, T b) noexcept
{
return (a = a * b);
}
/// @}
/**
* Divides the first value by the second value and stores the result in the first value.
*
* @param a First value.
* @param b Second value.
*
* @return Reference to the first value.
*/
/// @{
template <class T>
constexpr inline quaternion<T>& operator/=(quaternion<T>& a, const quaternion<T>& b) noexcept
{
return (a = a / b);
}
template <class T>
constexpr inline quaternion<T>& operator/=(quaternion<T>& a, T b) noexcept
{
return (a = a / b);
}
/// @}
/**
* Writes the real and imaginary parts of a quaternion to an output stream, with each number delimeted by a space.
*
* @param os Output stream.
* @param q Quaternion.
*
* @return Output stream.
*/
template <class T>
std::ostream& operator<<(std::ostream& os, const math::quaternion<T>& q)
{
os << q.r << ' ' << q.i;
return os;
}
/**
* Reads the real and imaginary parts of a quaternion from an input stream, with each number delimeted by a space.
*
* @param is Input stream.
* @param q Quaternion.
*
* @return Input stream.
*/
template <class T>
std::istream& operator>>(std::istream& is, const math::quaternion<T>& q)
{
is >> q.r;
is >> q.i;
return is;
}
} // namespace operators
} // namespace math
using namespace math::operators;
#endif // ANTKEEPER_MATH_QUATERNION_HPP

+ 1
- 3
src/math/se3.hpp View File

@ -21,9 +21,7 @@
#define ANTKEEPER_MATH_TRANSFORMATION_SE3_HPP
#include "math/vector.hpp"
#include "math/quaternion-type.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion-functions.hpp"
#include "math/quaternion.hpp"
namespace math {
namespace transformation {

+ 0
- 65
src/math/stream-operators.hpp View File

@ -1,65 +0,0 @@
/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ANTKEEPER_MATH_STREAM_OPERATORS_HPP
#define ANTKEEPER_MATH_STREAM_OPERATORS_HPP
#include "math/quaternion-type.hpp"
#include <istream>
#include <ostream>
/**
* Writes the real and imaginary parts of a quaternion to an output stream, with each number delimeted by a space.
*
* @param os Output stream.
* @param q Quaternion.
* @return Output stream.
*/
template <class T>
std::ostream& operator<<(std::ostream& os, const math::quaternion<T>& q);
/**
* Reads the real and imaginary parts of a quaternion from an input stream, with each number delimeted by a space.
*
* @param is Input stream.
* @param q Quaternion.
* @return Input stream.
*/
template <class T>
std::istream& operator>>(std::istream& is, const math::quaternion<T>& q);
template <class T>
std::ostream& operator<<(std::ostream& os, const math::quaternion<T>& q)
{
os << q.w << ' ' << q.x() << ' ' << q.y() << ' ' << q.z();
return os;
}
template <class T>
std::istream& operator>>(std::istream& is, const math::quaternion<T>& q)
{
is >> q.w;
is >> q.x;
is >> q.y;
is >> q.z;
return is;
}
#endif // ANTKEEPER_MATH_STREAM_OPERATORS_HPP

+ 1
- 1
src/math/transform-functions.hpp View File

@ -21,7 +21,7 @@
#define ANTKEEPER_MATH_TRANSFORM_FUNCTIONS_HPP
#include "math/transform-type.hpp"
#include "math/quaternion-functions.hpp"
#include "math/quaternion.hpp"
namespace math {

+ 4
- 4
src/math/transform-type.hpp View File

@ -21,7 +21,7 @@
#define ANTKEEPER_MATH_TRANSFORM_TYPE_HPP
#include "math/vector.hpp"
#include "math/quaternion-type.hpp"
#include "math/quaternion.hpp"
namespace math {
@ -49,9 +49,9 @@ struct transform
template <class T>
constexpr transform<T> transform<T>::identity =
{
{T(0), T(0), T(0)},
{T(1), T(0), T(0), T(0)},
{T(1), T(1), T(1)}
vector<T, 3>::zero(),
quaternion<T>::identity(),
vector<T, 3>::one()
};
} // namespace math

+ 37
- 4
src/math/vector.hpp View File

@ -293,7 +293,8 @@ using vector4 = vector;
/**
* Returns the absolute values of each element.
*
* @param x Input vector
* @param x Input vector.
*
* @return Absolute values of input vector elements.
*/
template <class T, std::size_t N>
@ -304,6 +305,7 @@ constexpr vector abs(const vector& x);
*
* @param x First value.
* @param y Second value.
*
* @return Sum of the two values.
*/
/// @{
@ -317,6 +319,7 @@ constexpr vector add(const vector& x, T y) noexcept;
* Checks if all elements of a boolean vector are `true`.
*
* @param x Vector to be tested for truth.
*
* @return `true` if all elements are `true`, `false` otherwise.
*/
template <std::size_t N>
@ -326,6 +329,7 @@ constexpr bool all(const vector& x) noexcept;
* Checks if any elements of a boolean vector are `true`.
*
* @param x Vector to be tested for truth.
*
* @return `true` if any elements are `true`, `false` otherwise.
*/
template <std::size_t N>
@ -334,7 +338,8 @@ constexpr bool any(const vector& x) noexcept;
/**
* Performs a element-wise ceil operation.
*
* @param x Input vector
* @param x Input vector.
*
* @return Component-wise ceil of input vector.
*/
template <class T, std::size_t N>
@ -346,6 +351,7 @@ constexpr vector ceil(const vector& x);
* @param x Vector to clamp.
* @param min Minimum value.
* @param max Maximum value.
*
* @return Clamped vector.
*/
/// @{
@ -360,6 +366,7 @@ constexpr vector clamp(const vector& x, T min, T max);
*
* @param x Vector to clamp.
* @param max_length Maximum length.
*
* @return Length-clamped vector.
*/
template <class T, std::size_t N>
@ -370,6 +377,7 @@ vector clamp_length(const vector& x, T max_length);
*
* @param x First vector.
* @param y Second vector.
*
* @return Cross product of the two vectors.
*/
template <class T>
@ -380,6 +388,7 @@ constexpr vector cross(const vector& x, const vector& y) noexc
*
* @param p0 First of two points.
* @param p1 Second of two points.
*
* @return Distance between the two points.
*/
template <class T, std::size_t N>
@ -390,6 +399,7 @@ T distance(const vector& p0, const vector& p1);
*
* @param p0 First of two points.
* @param p1 Second of two points.
*
* @return Squared distance between the two points.
*/
template <class T, std::size_t N>
@ -400,6 +410,7 @@ constexpr T distance_squared(const vector& p0, const vector& p1) noe
*
* @param x First value.
* @param y Second value.
*
* @return Result of the division.
*/
/// @{
@ -416,6 +427,7 @@ constexpr vector div(T x, const vector& y) noexcept;
*
* @param x First vector.
* @param y Second vector.
*
* @return Dot product of the two vectors.
*/
template <class T, std::size_t N>
@ -426,6 +438,7 @@ constexpr T dot(const vector& x, const vector& y) noexcept;
*
* @param x First vector.
* @param y Second vector.
*
* @return Boolean vector containing the result of the element comparisons.
*/
template <class T, std::size_t N>
@ -434,7 +447,8 @@ constexpr vector equal(const vector& x, const vector& y) no
/**
* Performs a element-wise floor operation.
*
* @param x Input vector
* @param x Input vector.
*
* @return Component-wise floor of input vector.
*/
template <class T, std::size_t N>
@ -459,7 +473,8 @@ constexpr vector fma(const vector& x, T y, T z);
/**
* Returns a vector containing the fractional part of each element.
*
* @param x Input vector
* @param x Input vector.
*
* @return Fractional parts of input vector.
*/
template <class T, std::size_t N>
@ -470,6 +485,7 @@ constexpr vector fract(const vector& x);
*
* @param x First vector.
* @param y Second vector.
*
* @return Boolean vector containing the result of the element comparisons.
*/
template <class T, std::size_t N>
@ -480,6 +496,7 @@ constexpr vector greater_than(const vector& x, const vector
*
* @param x First vector.
* @param y Second vector.
*
* @return Boolean vector containing the result of the element comparisons.
*/
template <class T, std::size_t N>
@ -489,6 +506,7 @@ constexpr vector greater_than_equal(const vector& x, const vector
* Calculates the length of a vector.
*
* @param x Vector of which to calculate the length.
*
* @return Length of the vector.
*/
template <class T, std::size_t N>
@ -498,6 +516,7 @@ T length(const vector& x);
* Calculates the squared length of a vector. The squared length can be calculated faster than the length because a call to `std::sqrt` is saved.
*
* @param x Vector of which to calculate the squared length.
*
* @return Squared length of the vector.
*/
template <class T, std::size_t N>
@ -508,6 +527,7 @@ constexpr T length_squared(const vector& x) noexcept;
*
* @param x First vector.
* @param y Second vector.
*
* @return Boolean vector containing the result of the element comparisons.
*/
template <class T, std::size_t N>
@ -518,6 +538,7 @@ constexpr vector less_than(const vector& x, const vector& y
*
* @param x First vector.
* @param y Second vector.
*
* @return Boolean vector containing the result of the element comparisons.
*/
template <class T, std::size_t N>
@ -570,6 +591,7 @@ constexpr T min(const vector& x);
*
* @param x First vector.
* @param y Second vector.
*
* @return Remainders of `x / y`.
*/
/// @{
@ -584,6 +606,7 @@ constexpr vector mod(const vector& x, T y);
*
* @param x First value.
* @param y Second value.
*
* @return Product of the two values.
*/
/// @{
@ -597,6 +620,7 @@ constexpr vector mul(const vector& x, T y) noexcept;
* Negates a vector.
*
* @param x Vector to negate.
*
* @return Negated vector.
*/
template <class T, std::size_t N>
@ -606,6 +630,7 @@ constexpr vector negate(const vector& x) noexcept;
* Calculates the unit vector in the same direction as the original vector.
*
* @param x Vector to normalize.
*
* @return Normalized vector.
*/
template <class T, std::size_t N>
@ -615,6 +640,7 @@ vector normalize(const vector& x);
* Logically inverts a boolean vector.
*
* @param x Vector to be inverted.
*
* @return Logically inverted vector.
*/
template <class T, std::size_t N>
@ -625,6 +651,7 @@ constexpr vector not(const vector& x) noexcept;
*
* @param x First vector.
* @param y Second vector.
*
* @return Boolean vector containing the result of the element comparisons.
*/
template <class T, std::size_t N>
@ -649,6 +676,7 @@ vector pow(const vector& x, T y);
* Performs a element-wise round operation.
*
* @param x Input vector
*
* @return Component-wise round of input vector.
*/
template <class T, std::size_t N>
@ -678,6 +706,7 @@ vector sqrt(const vector& x);
*
* @param x First value.
* @param y Second value.
*
* @return Difference between the two values.
*/
/// @{
@ -1422,6 +1451,7 @@ constexpr inline vector operator-(T x, const vector& y) noexcept
*
* @param x First value.
* @param y Second value.
*
* @return Reference to the first value.
*/
/// @{
@ -1442,6 +1472,7 @@ constexpr inline vector& operator+=(vector& x, T y) noexcept
*
* @param x First value.
* @param y Second value.
*
* @return Reference to the first value.
*/
/// @{
@ -1462,6 +1493,7 @@ constexpr inline vector& operator-=(vector& x, T y) noexcept
*
* @param x First value.
* @param y Second value.
*
* @return Reference to the first value.
*/
/// @{
@ -1482,6 +1514,7 @@ constexpr inline vector& operator*=(vector& x, T y) noexcept
*
* @param x First value.
* @param y Second value.
*
* @return Reference to the first value.
*/
/// @{

+ 1
- 1
src/render/passes/material-pass.cpp View File

@ -42,7 +42,7 @@
#include "scene/point-light.hpp"
#include "scene/spot-light.hpp"
#include "config.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "math/projection.hpp"
#include <cmath>
#include <glad/glad.h>

+ 1
- 1
src/render/passes/shadow-map-pass.cpp View File

@ -34,7 +34,7 @@
#include "config.hpp"
#include "math/vector.hpp"
#include "math/matrix.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "math/projection.hpp"
#include <cmath>
#include <glad/glad.h>

+ 2
- 2
src/render/passes/sky-pass.cpp View File

@ -70,9 +70,9 @@ sky_pass::sky_pass(gl::rasterizer* rasterizer, const gl::framebuffer* framebuffe
sun_luminance_tween(float3{0.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
sun_illuminance_tween(float3{0.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
icrf_to_eus_translation({0, 0, 0}, math::lerp<float3, float>),
icrf_to_eus_rotation(math::quaternion<float>::identity, math::nlerp<float>),
icrf_to_eus_rotation(math::quaternion<float>::identity(), math::nlerp<float>),
moon_position_tween(float3{0, 0, 0}, math::lerp<float3, float>),
moon_rotation_tween(math::quaternion<float>::identity, math::nlerp<float>),
moon_rotation_tween(math::quaternion<float>::identity(), math::nlerp<float>),
moon_angular_radius_tween(0.0f, math::lerp<float, float>),
moon_sunlight_direction_tween(float3{0, 0, 0}, math::lerp<float3, float>),
moon_sunlight_illuminance_tween(float3{0, 0, 0}, math::lerp<float3, float>),

+ 1
- 1
src/render/passes/sky-pass.hpp View File

@ -25,7 +25,7 @@
#include "event/event-handler.hpp"
#include "event/input-events.hpp"
#include "animation/tween.hpp"
#include "math/quaternion-type.hpp"
#include "math/quaternion.hpp"
#include "gl/shader-program.hpp"
#include "gl/shader-input.hpp"
#include "gl/vertex-buffer.hpp"

+ 1
- 1
src/render/renderer.cpp View File

@ -31,7 +31,7 @@
#include "math/matrix.hpp"
#include "geom/projection.hpp"
#include "config.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include <functional>
#include <set>

+ 4
- 4
src/resources/entity-archetype-loader.cpp View File

@ -275,10 +275,10 @@ static bool load_component_transform(entity::archetype& archetype, const json& e
if (element.contains("rotation"))
{
auto translation = element["rotation"];
component.local.rotation.w = translation[0].get<float>();
component.local.rotation.x = translation[1].get<float>();
component.local.rotation.y = translation[2].get<float>();
component.local.rotation.z = translation[3].get<float>();
component.local.rotation.w() = translation[0].get<float>();
component.local.rotation.x() = translation[1].get<float>();
component.local.rotation.y() = translation[2].get<float>();
component.local.rotation.z() = translation[3].get<float>();
}
if (element.contains("scale"))

+ 4
- 4
src/resources/model-loader.cpp View File

@ -259,10 +259,10 @@ render::model* resource_loader::load(resource_manager* resource_m
{
if (rotation_node->size() == 4)
{
bone_transform.rotation.w = (*rotation_node)[0].get<float>();
bone_transform.rotation.x = (*rotation_node)[1].get<float>();
bone_transform.rotation.y = (*rotation_node)[2].get<float>();
bone_transform.rotation.z = (*rotation_node)[3].get<float>();
bone_transform.rotation.w() = (*rotation_node)[0].get<float>();
bone_transform.rotation.x() = (*rotation_node)[1].get<float>();
bone_transform.rotation.y() = (*rotation_node)[2].get<float>();
bone_transform.rotation.z() = (*rotation_node)[3].get<float>();
}
}

+ 1
- 1
src/scene/camera.cpp View File

@ -21,7 +21,7 @@
#include "config.hpp"
#include "math/constants.hpp"
#include "math/interpolation.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "math/projection.hpp"
namespace scene {

+ 1
- 1
src/scene/directional-light.cpp View File

@ -19,7 +19,7 @@
#include "directional-light.hpp"
#include "config.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "math/interpolation.hpp"
namespace scene {

+ 1
- 1
src/scene/object.hpp View File

@ -23,7 +23,7 @@
#include "animation/tween.hpp"
#include "geom/bounding-volume.hpp"
#include "math/vector.hpp"
#include "math/quaternion-type.hpp"
#include "math/quaternion.hpp"
#include "math/transform-type.hpp"
#include "render/context.hpp"
#include "render/queue.hpp"

+ 1
- 1
src/scene/spot-light.cpp View File

@ -19,7 +19,7 @@
#include "spot-light.hpp"
#include "config.hpp"
#include "math/quaternion-operators.hpp"
#include "math/quaternion.hpp"
#include "math/interpolation.hpp"
#include <cmath>

Loading…
Cancel
Save