|
|
@ -26,6 +26,8 @@ |
|
|
|
#include "utility/gamma.hpp"
|
|
|
|
#include "resources/image.hpp"
|
|
|
|
#include "game/astronomy/celestial-coordinates.hpp"
|
|
|
|
#include "game/astronomy/celestial-mechanics.hpp"
|
|
|
|
#include "game/astronomy/celestial-time.hpp"
|
|
|
|
#include <cmath>
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
@ -33,190 +35,6 @@ static constexpr double hours_per_day = 24.0; |
|
|
|
static constexpr double minutes_per_day = hours_per_day * 60.0; |
|
|
|
static constexpr double seconds_per_day = minutes_per_day * 60.0; |
|
|
|
|
|
|
|
/**
|
|
|
|
* |
|
|
|
* @param year Gregorian year |
|
|
|
* @param month Month (1 = January, 12 = December) |
|
|
|
* @param day Day (1-31) |
|
|
|
* @param time Universal time in decimal hours. |
|
|
|
*/ |
|
|
|
static double julian_day(int year, int month, int day, double time) |
|
|
|
{ |
|
|
|
if (month < 3) |
|
|
|
{ |
|
|
|
month += 12; |
|
|
|
year -= 1; |
|
|
|
} |
|
|
|
|
|
|
|
double y = static_cast<double>(year); |
|
|
|
double m = static_cast<double>(month); |
|
|
|
double d = static_cast<double>(day); |
|
|
|
|
|
|
|
return std::floor(365.25 * y) + std::floor(30.6001 * (m + 1.0)) - 15.0 + 1720996.5 + d + time; |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the ecliptic rectangular geocentric coordinates of the sun, with distance in AU. |
|
|
|
*/ |
|
|
|
double3 calculate_sun_ecliptic(double jd) |
|
|
|
{ |
|
|
|
const double t = (jd - 2451545.0) / 36525.0; |
|
|
|
const double m = 6.24 + 628.302 * t; |
|
|
|
|
|
|
|
const double longitude = 4.895048 + 628.331951 * t + (0.033417 - 0.000084 * t) * std::sin(m) + 0.000351 * std::sin(m * 2.0); |
|
|
|
const double latitude = 0.0; |
|
|
|
const double distance = 1.000140 - (0.016708 - 0.000042 * t) * std::cos(m) - 0.000141 * std::cos(m * 2.0); |
|
|
|
|
|
|
|
double3 ecliptic; |
|
|
|
ecliptic.x = distance * std::cos(longitude) * std::cos(latitude); |
|
|
|
ecliptic.y = distance * std::sin(longitude) * std::cos(latitude); |
|
|
|
ecliptic.z = distance * std::sin(latitude); |
|
|
|
|
|
|
|
return ecliptic; |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the ecliptic rectangular geocentric coordinates of the moon, with distance in Earth radii. |
|
|
|
*/ |
|
|
|
double3 calculate_moon_ecliptic(double jd) |
|
|
|
{ |
|
|
|
const double t = (jd - 2451545.0) / 36525.0; |
|
|
|
const double l1 = 3.8104 + 8399.7091 * t; |
|
|
|
const double m1 = 2.3554 + 8328.6911 * t; |
|
|
|
const double m = 6.2300 + 628.3019 * t; |
|
|
|
const double d = 5.1985 + 7771.3772 * t; |
|
|
|
const double d2 = d * 2.0; |
|
|
|
const double f = 1.6280 + 8433.4663 * t; |
|
|
|
|
|
|
|
const double longitude = l1 |
|
|
|
+ 0.1098 * std::sin(m1) |
|
|
|
+ 0.0222 * std::sin(d2 - m1) |
|
|
|
+ 0.0115 * std::sin(d2) |
|
|
|
+ 0.0037 * std::sin(m1 * 2.0) |
|
|
|
- 0.0032 * std::sin(m) |
|
|
|
- 0.0020 * std::sin(d2) |
|
|
|
+ 0.0010 * std::sin(d2 - m1 * 2.0) |
|
|
|
+ 0.0010 * std::sin(d2 - m - m1) |
|
|
|
+ 0.0009 * std::sin(d2 + m1) |
|
|
|
+ 0.0008 * std::sin(d2 - m) |
|
|
|
+ 0.0007 * std::sin(m1 - m) |
|
|
|
- 0.0006 * std::sin(d) |
|
|
|
- 0.0005 * std::sin(m + m1); |
|
|
|
|
|
|
|
const double latitude = 0.0895 * sin(f) |
|
|
|
+ 0.0049 * std::sin(m1 + f) |
|
|
|
+ 0.0048 * std::sin(m1 - f) |
|
|
|
+ 0.0030 * std::sin(d2 - f) |
|
|
|
+ 0.0010 * std::sin(d2 + f - m1) |
|
|
|
+ 0.0008 * std::sin(d2 - f - m1) |
|
|
|
+ 0.0006 * std::sin(d2 + f); |
|
|
|
|
|
|
|
const double r = 1.0 / (0.016593 |
|
|
|
+ 0.000904 * std::cos(m1) |
|
|
|
+ 0.000166 * std::cos(d2 - m1) |
|
|
|
+ 0.000137 * std::cos(d2) |
|
|
|
+ 0.000049 * std::cos(m1 * 2.0) |
|
|
|
+ 0.000015 * std::cos(d2 + m1) |
|
|
|
+ 0.000009 * std::cos(d2 - m)); |
|
|
|
|
|
|
|
double3 ecliptic; |
|
|
|
ecliptic.x = r * std::cos(longitude) * std::cos(latitude); |
|
|
|
ecliptic.y = r * std::sin(longitude) * std::cos(latitude); |
|
|
|
ecliptic.z = r * std::sin(latitude); |
|
|
|
|
|
|
|
return ecliptic; |
|
|
|
} |
|
|
|
|
|
|
|
double3x3 find_moon_ecliptic_rotation(double jd) |
|
|
|
{ |
|
|
|
const double t = (jd - 2451545.0) / 36525.0; |
|
|
|
const double l1 = 3.8104 + 8399.7091 * t; |
|
|
|
const double f = 1.6280 + 8433.4663 * t; |
|
|
|
|
|
|
|
const double az0 = f + math::pi<double>; |
|
|
|
const double ax = 0.026920; |
|
|
|
const double az1 = l1 - f; |
|
|
|
|
|
|
|
double3x3 rz0 = |
|
|
|
{ |
|
|
|
cos(az0), -sin(az0), 0, |
|
|
|
sin(az0), cos(az0), 0, |
|
|
|
0, 0, 1 |
|
|
|
}; |
|
|
|
|
|
|
|
double3x3 rx = |
|
|
|
{ |
|
|
|
1, 0, 0, |
|
|
|
0, cos(ax), -sin(ax), |
|
|
|
0, sin(ax), cos(ax) |
|
|
|
}; |
|
|
|
|
|
|
|
double3x3 rz1 = |
|
|
|
{ |
|
|
|
cos(az1), -sin(az1), 0, |
|
|
|
sin(az1), cos(az1), 0, |
|
|
|
0, 0, 1 |
|
|
|
}; |
|
|
|
|
|
|
|
return rz0 * rx * rz1; |
|
|
|
} |
|
|
|
|
|
|
|
/// @see http://www.stjarnhimlen.se/comp/ppcomp.html
|
|
|
|
/// @see http://www.geoastro.de/elevazmoon/basics/index.htm
|
|
|
|
void ecliptic_to_equatorial(double longitude, double latitude, double ecl, double* right_ascension, double* declination) |
|
|
|
{ |
|
|
|
double eclip_x = std::cos(longitude) * std::cos(latitude); |
|
|
|
double eclip_y = std::sin(longitude) * std::cos(latitude); |
|
|
|
double eclip_z = std::sin(latitude); |
|
|
|
|
|
|
|
double equat_x = eclip_x; |
|
|
|
double equat_y = eclip_y * std::cos(ecl) - eclip_z * std::sin(ecl); |
|
|
|
double equat_z = eclip_y * std::sin(ecl) + eclip_z * std::cos(ecl); |
|
|
|
|
|
|
|
*right_ascension = std::atan2(equat_y, equat_x); |
|
|
|
*declination = std::atan2(equat_z, sqrt(equat_x * equat_x + equat_y * equat_y)); |
|
|
|
} |
|
|
|
|
|
|
|
/// @see http://www.stjarnhimlen.se/comp/ppcomp.html
|
|
|
|
/// @see http://www.geoastro.de/elevazmoon/basics/index.htm
|
|
|
|
void equatorial_to_horizontal(double right_ascension, double declination, double lmst, double latitude, double* azimuth, double* elevation) |
|
|
|
{ |
|
|
|
double hour_angle = lmst - right_ascension; |
|
|
|
|
|
|
|
double x = std::cos(hour_angle) * std::cos(declination); |
|
|
|
double y = std::sin(hour_angle) * std::cos(declination); |
|
|
|
double z = std::sin(declination); |
|
|
|
|
|
|
|
double horiz_x = x * std::cos(math::half_pi<double> - latitude) - z * std::sin(math::half_pi<double> - latitude); |
|
|
|
double horiz_y = y; |
|
|
|
double horiz_z = x * std::sin(math::half_pi<double> - latitude) + z * std::cos(math::half_pi<double> - latitude); |
|
|
|
|
|
|
|
*azimuth = math::wrap_radians<double>(std::atan2(horiz_y, horiz_x) + math::pi<double>); |
|
|
|
*elevation = math::wrap_radians<double>(std::atan2(horiz_z, std::sqrt(horiz_x * horiz_x + horiz_y * horiz_y))); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
double3x3 horizontal_to_right_handed() |
|
|
|
{ |
|
|
|
return double3x3 |
|
|
|
{ |
|
|
|
0.0, 0.0, 1.0, |
|
|
|
1.0, 0.0, 0.0, |
|
|
|
0.0, -1.0, 0.0 |
|
|
|
}; |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the Greenwich mean sidereal time (GMST) from a Julian day. |
|
|
|
* |
|
|
|
* @param jd Julian day. |
|
|
|
* @return GMST, in radians. |
|
|
|
*/ |
|
|
|
static double jd_to_gmst(double jd) |
|
|
|
{ |
|
|
|
return math::wrap_radians<double>(4.894961212 + 6.300388098 * (jd - 2451545.0)); |
|
|
|
} |
|
|
|
|
|
|
|
weather_system::weather_system(entt::registry& registry): |
|
|
|
entity_system(registry), |
|
|
|
ambient_light(nullptr), |
|
|
@ -239,42 +57,38 @@ void weather_system::update(double t, double dt) |
|
|
|
const float latitude = location[0]; |
|
|
|
const float longitude = location[1]; |
|
|
|
|
|
|
|
// Calculate local mean sidereal time (LMST)
|
|
|
|
// Calculate local time
|
|
|
|
double time_correction = longitude / (math::two_pi<double> / 24.0); |
|
|
|
double local_jd = jd + time_correction / 24.0 - 0.5; |
|
|
|
double local_time = (local_jd - std::floor(local_jd)) * 24.0; |
|
|
|
double hour = local_time; |
|
|
|
double gmst = jd_to_gmst(jd); |
|
|
|
double lmst = gmst + longitude; |
|
|
|
|
|
|
|
// Obliquity of the ecliptic
|
|
|
|
double ecl = math::radians<double>(23.4393 - 3.563e-7 * (jd - 2451545.0)); |
|
|
|
|
|
|
|
// Solar distance in AU
|
|
|
|
//double sr = ...
|
|
|
|
// Apparent radius in degrees
|
|
|
|
//double sradius = 0.2666 / sr;
|
|
|
|
|
|
|
|
double lmst = ast::jd_to_lmst(jd, longitude); |
|
|
|
double ecl = ast::approx_ecliptic_obliquity(jd); |
|
|
|
double3x3 ecliptic_to_horizontal = ast::ecliptic_to_horizontal(ecl, latitude, lmst); |
|
|
|
|
|
|
|
|
|
|
|
double3 sun_ecliptic = calculate_sun_ecliptic(jd); |
|
|
|
double3 sun_ecliptic = ast::approx_sun_ecliptic(jd); |
|
|
|
double3 sun_horizontal = ecliptic_to_horizontal * sun_ecliptic; |
|
|
|
sun_horizontal.z -= 4.25875e-5; // Subtract one earth radius (in AU), for positon of observer
|
|
|
|
double3 sun_spherical = ast::rectangular_to_spherical(sun_horizontal); |
|
|
|
double3 sun_positiond = horizontal_to_right_handed() * sun_horizontal; |
|
|
|
double3 sun_positiond = ast::horizontal_to_right_handed * sun_horizontal; |
|
|
|
float2 sun_az_el = {static_cast<float>(sun_spherical.z) - math::pi<float>, static_cast<float>(sun_spherical.y)}; |
|
|
|
float3 sun_position = math::normalize(float3{static_cast<float>(sun_positiond.x), static_cast<float>(sun_positiond.y), static_cast<float>(sun_positiond.z)}); |
|
|
|
|
|
|
|
double3 moon_ecliptic = calculate_moon_ecliptic(jd); |
|
|
|
double3 moon_ecliptic = ast::approx_moon_ecliptic(jd); |
|
|
|
double3 moon_horizontal = ecliptic_to_horizontal * moon_ecliptic; |
|
|
|
moon_horizontal.z -= 1.0; // Subtract one earth radius, for position of observer
|
|
|
|
double3 moon_spherical = ast::rectangular_to_spherical(moon_horizontal); |
|
|
|
double3 moon_positiond = horizontal_to_right_handed() * moon_horizontal; |
|
|
|
double3 moon_positiond = ast::horizontal_to_right_handed * moon_horizontal; |
|
|
|
float2 moon_az_el = {static_cast<float>(moon_spherical.z) - math::pi<float>, static_cast<float>(moon_spherical.y)}; |
|
|
|
float3 moon_position = math::normalize(float3{static_cast<float>(moon_positiond.x), static_cast<float>(moon_positiond.y), static_cast<float>(moon_positiond.z)}); |
|
|
|
|
|
|
|
//std::cout << "new moon: " << math::degrees(moon_az_el[0]) << ", " << math::degrees(moon_az_el[1]) << std::endl;
|
|
|
|
|
|
|
|
double3x3 moon_rotation_matrix = horizontal_to_right_handed() * ecliptic_to_horizontal; |
|
|
|
|
|
|
|
double3x3 moon_rotation_matrix = ast::horizontal_to_right_handed * ecliptic_to_horizontal; |
|
|
|
math::quaternion<double> moon_rotationd = math::normalize(math::quaternion_cast(moon_rotation_matrix) * math::angle_axis(math::half_pi<double>, double3{0, 1, 0}) * math::angle_axis(-math::half_pi<double>, double3{0, 0, -1})); |
|
|
|
math::quaternion<float> moon_rotation = |
|
|
|
{ |
|
|
@ -300,9 +114,6 @@ void weather_system::update(double t, double dt) |
|
|
|
moon_light->set_rotation(moon_az_el_rotation); |
|
|
|
} |
|
|
|
|
|
|
|
std::size_t hour_index = static_cast<std::size_t>(hour); |
|
|
|
float lerp_factor = hour - std::floor(hour); |
|
|
|
|
|
|
|
float sun_gradient_position = static_cast<float>(std::max<double>(0.0, ((sun_az_el[1] + math::half_pi<double>) / math::pi<double>))); |
|
|
|
float moon_gradient_position = static_cast<float>(std::max<double>(0.0, ((moon_az_el[1] + math::half_pi<double>) / math::pi<double>))); |
|
|
|
float sky_gradient_position = sun_gradient_position; |
|
|
@ -325,7 +136,7 @@ void weather_system::update(double t, double dt) |
|
|
|
|
|
|
|
sky_pass->set_horizon_color(horizon_color); |
|
|
|
sky_pass->set_zenith_color(zenith_color); |
|
|
|
sky_pass->set_time_of_day(static_cast<float>(hour * 60.0 * 60.0)); |
|
|
|
sky_pass->set_time_of_day(static_cast<float>(local_time * 60.0 * 60.0)); |
|
|
|
sky_pass->set_observer_location(location[0], location[1], location[2]); |
|
|
|
sky_pass->set_sun_coordinates(sun_position, sun_az_el); |
|
|
|
sky_pass->set_moon_coordinates(moon_position, moon_az_el); |
|
|
@ -399,10 +210,9 @@ void weather_system::set_material_pass(::material_pass* pass) |
|
|
|
material_pass = pass; |
|
|
|
} |
|
|
|
|
|
|
|
void weather_system::set_time(int year, int month, int day, int hour, int minute, int second, double tc) |
|
|
|
void weather_system::set_time(int year, int month, int day, int hour, int minute, double second, double tc) |
|
|
|
{ |
|
|
|
double time = ((static_cast<double>(hour) - tc) + ((static_cast<double>(minute) + static_cast<double>(second) / 60.0) / 60.0)) / 24.0; |
|
|
|
jd = julian_day(year, month, day, time); |
|
|
|
jd = ast::ut_to_jd(year, month, day, hour, minute, second) - tc / 24.0; |
|
|
|
} |
|
|
|
|
|
|
|
void weather_system::set_time_scale(float scale) |
|
|
|