💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

373 lines
12 KiB

  1. /*
  2. * Copyright (C) 2021 Christopher J. Howard
  3. *
  4. * This file is part of Antkeeper source code.
  5. *
  6. * Antkeeper source code is free software: you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation, either version 3 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * Antkeeper source code is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "painting.hpp"
  20. #include "entity/components/transform.hpp"
  21. #include "entity/components/brush.hpp"
  22. #include "entity/components/tool.hpp"
  23. #include "event/event-dispatcher.hpp"
  24. #include "resources/resource-manager.hpp"
  25. #include "math/math.hpp"
  26. #include "renderer/material.hpp"
  27. #include "renderer/model.hpp"
  28. #include "utility/fundamental-types.hpp"
  29. #include "entity/commands.hpp"
  30. #include "entity/components/collision.hpp"
  31. #include "entity/components/transform.hpp"
  32. #include "gl/vertex-buffer.hpp"
  33. #include "renderer/vertex-attribute.hpp"
  34. #include "geom/mesh-functions.hpp"
  35. #include <limits>
  36. namespace entity {
  37. namespace system {
  38. painting::painting(entity::registry& registry, ::event_dispatcher* event_dispatcher, ::resource_manager* resource_manager):
  39. updatable(registry),
  40. event_dispatcher(event_dispatcher),
  41. resource_manager(resource_manager),
  42. scene_collection(nullptr),
  43. is_painting(false)
  44. {
  45. /*
  46. event_dispatcher->subscribe<tool_pressed_event>(this);
  47. event_dispatcher->subscribe<tool_released_event>(this);
  48. max_miter_angle = math::radians(135.0f);
  49. decal_offset = 0.01f;
  50. stroke_width = 1.5f;
  51. min_stroke_length = 1.0f;
  52. min_stroke_length_squared = min_stroke_length * min_stroke_length;
  53. max_stroke_segments = 4096;
  54. current_stroke_segment = 0;
  55. vertex_size = 13;
  56. vertex_stride = sizeof(float) * vertex_size;
  57. vertex_count = max_stroke_segments * 6;
  58. // Create stroke model
  59. stroke_model = new model();
  60. stroke_model_group = stroke_model->add_group();
  61. stroke_model_group->set_material(resource_manager->load<material>("brushstroke.mtl"));
  62. // Setup stroke vbo and vao
  63. stroke_vbo = stroke_model->get_vertex_buffer();
  64. stroke_vbo->repurpose(gl::buffer_usage::dynamic_draw, sizeof(float) * vertex_size * vertex_count, nullptr);
  65. stroke_model->get_vertex_array()->bind_attribute(VERTEX_POSITION_LOCATION, *stroke_vbo, 4, gl::vertex_attribute_type::float_32, vertex_stride, 0);
  66. stroke_model->get_vertex_array()->bind_attribute(VERTEX_NORMAL_LOCATION, *stroke_vbo, 3, gl::vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 4);
  67. stroke_model->get_vertex_array()->bind_attribute(VERTEX_TEXCOORD_LOCATION, *stroke_vbo, 2, gl::vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 7);
  68. stroke_model->get_vertex_array()->bind_attribute(VERTEX_TANGENT_LOCATION, *stroke_vbo, 4, gl::vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 9);
  69. // Create stroke model instance
  70. stroke_model_instance = new scene::model_instance();
  71. stroke_model_instance->set_model(stroke_model);
  72. stroke_model_instance->update_tweens();
  73. stroke_bounds_min.x = std::numeric_limits<float>::infinity();
  74. stroke_bounds_min.y = std::numeric_limits<float>::infinity();
  75. stroke_bounds_min.z = std::numeric_limits<float>::infinity();
  76. stroke_bounds_max.x = -std::numeric_limits<float>::infinity();
  77. stroke_bounds_max.y = -std::numeric_limits<float>::infinity();
  78. stroke_bounds_max.z = -std::numeric_limits<float>::infinity();
  79. midstroke = false;
  80. */
  81. }
  82. painting::~painting()
  83. {
  84. /*
  85. event_dispatcher->unsubscribe<tool_pressed_event>(this);
  86. event_dispatcher->unsubscribe<tool_released_event>(this);
  87. */
  88. }
  89. void painting::update(double t, double dt)
  90. {
  91. /*
  92. if (is_painting)
  93. {
  94. const component::tool& tool = registry.get<component::tool>(brush_entity);
  95. auto cast_result = cast_ray(tool.cursor);
  96. if (cast_result.has_value())
  97. {
  98. stroke_end = std::get<0>(cast_result.value());
  99. float3 surface_normal = std::get<1>(cast_result.value());
  100. float3 segment_difference = stroke_end - stroke_start;
  101. float segment_length_squared = math::dot(segment_difference, segment_difference);
  102. if (segment_length_squared >= min_stroke_length_squared)
  103. {
  104. float segment_length = std::sqrt(segment_length_squared);
  105. float3 segment_forward = segment_difference / segment_length;
  106. float3 segment_right = math::normalize(math::cross(segment_forward, surface_normal));
  107. float3 segment_up = math::cross(segment_right, segment_forward);
  108. float angle = std::acos(math::dot(segment_forward, float3{0, 0, -1}));
  109. float3 cross = math::cross(segment_forward, float3{0, 0, -1});
  110. if (math::dot(surface_normal, cross) < 0.0f)
  111. angle = -angle;
  112. math::quaternion<float> tangent_rotation = math::normalize(math::angle_axis(-angle, surface_normal));
  113. float3 p1 = stroke_start;
  114. float3 p2 = stroke_end;
  115. // Find miter
  116. float3 tangent = math::normalize(math::normalize(p2 - p1) + math::normalize(p1 - p0));
  117. float2 miter = float2{-tangent.z, tangent.x};
  118. float2 normal = float2{segment_right.x, segment_right.z};
  119. float miter_length = stroke_width / math::dot(miter, normal);
  120. float3 a = p0a;
  121. float3 b = p0b;
  122. float3 c = p1 - segment_right * stroke_width * 0.5f + segment_up * decal_offset;
  123. float3 d = p1 + segment_right * stroke_width * 0.5f + segment_up * decal_offset;
  124. float3 e = p2 - segment_right * stroke_width * 0.5f + segment_up * decal_offset;
  125. float3 f = p2 + segment_right * stroke_width * 0.5f + segment_up * decal_offset;
  126. // Adjust c and d
  127. bool mitered = false;
  128. if (midstroke)
  129. {
  130. float angle = std::acos(math::dot(math::normalize(p2 - p1), math::normalize(p1 - p0)));
  131. if (angle < max_miter_angle)
  132. {
  133. mitered = true;
  134. c = p1 - float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f + segment_up * decal_offset;
  135. d = p1 + float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f + segment_up * decal_offset;
  136. }
  137. }
  138. const float3 positions[] =
  139. {
  140. a, b, c,
  141. c, b, d,
  142. c, d, e,
  143. e, d, f
  144. };
  145. const float w = static_cast<float>(t);
  146. float2 texcoords[] =
  147. {
  148. {0, 0}, {1, 0}, {0, 1},
  149. {0, 1}, {1, 0}, {1, 1},
  150. {0, 0}, {1, 0}, {0, 1},
  151. {0, 1}, {1, 0}, {1, 1},
  152. };
  153. float3 tangent_positions[] =
  154. {
  155. {0, 0, 0}, {1, 0, 0}, {0, 0, 1},
  156. {0, 0, 1}, {1, 0, 0}, {1, 0, 1},
  157. {0, 0, 0}, {1, 0, 0}, {0, 0, 1},
  158. {0, 0, 1}, {1, 0, 0}, {1, 0, 1}
  159. };
  160. /// @TODO: smooth normals in middle of segment
  161. float4 tangents[12];
  162. for (int i = 0; i < 4; ++i)
  163. {
  164. const float3& a = tangent_positions[i * 3];
  165. const float3& b = tangent_positions[i * 3 + 1];
  166. const float3& c = tangent_positions[i * 3 + 2];
  167. const float2& uva = texcoords[i * 3];
  168. const float2& uvb = texcoords[i * 3 + 1];
  169. const float2& uvc = texcoords[i * 3 + 2];
  170. float3 ba = b - a;
  171. float3 ca = c - a;
  172. float2 uvba = uvb - uva;
  173. float2 uvca = uvc - uva;
  174. float f = 1.0f / (uvba.x * uvca.y - uvca.x * uvba.y);
  175. float3 tangent = math::normalize((ba * uvca.y - ca * uvba.y) * f);
  176. float3 bitangent = math::normalize((ba * -uvca.x + ca * uvba.x) * f);
  177. // Rotate tangent and bitangent according to segment rotation
  178. tangent = math::normalize(tangent_rotation * tangent);
  179. bitangent = math::normalize(tangent_rotation * bitangent);
  180. // Calculate sign of bitangent
  181. float bitangent_sign = (math::dot(math::cross(surface_normal, tangent), bitangent) < 0.0f) ? -1.0f : 1.0f;
  182. tangents[i * 3] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
  183. tangents[i * 3 + 1] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
  184. tangents[i * 3 + 2] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
  185. }
  186. float vertex_data[13 * 12];
  187. float* v = &vertex_data[0];
  188. for (int i = 0; i < 12; ++i)
  189. {
  190. *(v++) = positions[i].x;
  191. *(v++) = positions[i].y;
  192. *(v++) = positions[i].z;
  193. *(v++) = w;
  194. *(v++) = surface_normal.x;
  195. *(v++) = surface_normal.y;
  196. *(v++) = surface_normal.z;
  197. *(v++) = texcoords[i].x;
  198. *(v++) = texcoords[i].y;
  199. *(v++) = tangents[i].x;
  200. *(v++) = tangents[i].y;
  201. *(v++) = tangents[i].z;
  202. *(v++) = tangents[i].w;
  203. }
  204. std::size_t segment_size = sizeof(float) * vertex_size * 6;
  205. if (mitered)
  206. {
  207. stroke_vbo->update((current_stroke_segment - 1) * segment_size, segment_size * 2, &vertex_data[0]);
  208. }
  209. else
  210. {
  211. stroke_vbo->update(current_stroke_segment * segment_size, segment_size, &vertex_data[vertex_size * 6]);
  212. }
  213. ++current_stroke_segment;
  214. stroke_model_group->set_index_count(current_stroke_segment * 6);
  215. // Update stroke bounds
  216. stroke_bounds_min.x = std::min<float>(stroke_bounds_min.x, std::min<float>(c.x, std::min<float>(d.x, std::min<float>(e.x, f.x))));
  217. stroke_bounds_min.y = std::min<float>(stroke_bounds_min.y, std::min<float>(c.y, std::min<float>(d.y, std::min<float>(e.y, f.y))));
  218. stroke_bounds_min.z = std::min<float>(stroke_bounds_min.z, std::min<float>(c.z, std::min<float>(d.z, std::min<float>(e.z, f.z))));
  219. stroke_bounds_max.x = std::max<float>(stroke_bounds_max.x, std::max<float>(c.x, std::max<float>(d.x, std::max<float>(e.x, f.x))));
  220. stroke_bounds_max.y = std::max<float>(stroke_bounds_max.y, std::max<float>(c.y, std::max<float>(d.y, std::max<float>(e.y, f.y))));
  221. stroke_bounds_max.z = std::max<float>(stroke_bounds_max.z, std::max<float>(c.z, std::max<float>(d.z, std::max<float>(e.z, f.z))));
  222. stroke_model->set_bounds(geom::aabb<float>{stroke_bounds_min, stroke_bounds_max});
  223. stroke_model_instance->update_bounds();
  224. p0 = stroke_start;
  225. p0a = c;
  226. p0b = d;
  227. stroke_start = stroke_end;
  228. midstroke = true;
  229. }
  230. }
  231. }
  232. */
  233. }
  234. void painting::set_scene(scene::collection* collection)
  235. {
  236. /*
  237. this->scene_collection = collection;
  238. scene_collection->add_object(stroke_model_instance);
  239. */
  240. }
  241. void painting::handle_event(const tool_pressed_event& event)
  242. {
  243. /*
  244. if (registry.has<component::brush>(event.entity_id))
  245. {
  246. auto cast_result = cast_ray(event.position);
  247. if (cast_result.has_value())
  248. {
  249. brush_entity = event.entity_id;
  250. is_painting = true;
  251. stroke_start = std::get<0>(cast_result.value());
  252. stroke_end = stroke_start;
  253. p0 = stroke_start;
  254. p0a = p0;
  255. p0b = p0;
  256. midstroke = false;
  257. }
  258. }
  259. */
  260. }
  261. void painting::handle_event(const tool_released_event& event)
  262. {
  263. /*
  264. if (registry.has<component::brush>(event.entity_id))
  265. {
  266. auto cast_result = cast_ray(command::get_world_transform(registry, event.entity_id).translation);
  267. if (cast_result.has_value())
  268. {
  269. stroke_end = std::get<0>(cast_result.value());
  270. }
  271. brush_entity = entt::null;
  272. is_painting = false;
  273. }
  274. */
  275. }
  276. std::optional<std::tuple<float3, float3>> painting::cast_ray(const float3& position) const
  277. {
  278. std::optional<std::tuple<float3, float3>> result;
  279. /*
  280. float3 intersection;
  281. float3 surface_normal;
  282. geom::mesh::face* face = nullptr;
  283. geom::ray<float> untransformed_ray = {position + float3{0.0f, 10000.0f, 0.0f}, {0, -1, 0}};
  284. float min_distance = std::numeric_limits<float>::infinity();
  285. registry.view<component::transform, component::collision>().each(
  286. [&](entity::id entity_id, auto& collision_transform, auto& collision)
  287. {
  288. // Transform ray into local space of collision component
  289. math::transform<float> inverse_transform = math::inverse(collision_transform.local);
  290. float3 origin = inverse_transform * untransformed_ray.origin;
  291. float3 direction = math::normalize(math::conjugate(collision_transform.local.rotation) * untransformed_ray.direction);
  292. geom::ray<float> transformed_ray = {origin, direction};
  293. // Broad phase AABB test
  294. auto aabb_result = geom::ray_aabb_intersection(transformed_ray, collision.bounds);
  295. if (!std::get<0>(aabb_result))
  296. {
  297. return;
  298. }
  299. // Narrow phase mesh test
  300. auto mesh_result = collision.mesh_accelerator.query_nearest(transformed_ray);
  301. if (mesh_result)
  302. {
  303. if (mesh_result->t < min_distance)
  304. {
  305. min_distance = mesh_result->t;
  306. intersection = untransformed_ray.extrapolate(min_distance);
  307. face = mesh_result->face;
  308. }
  309. }
  310. });
  311. if (face != nullptr)
  312. {
  313. surface_normal = calculate_face_normal(*face);
  314. result = std::make_tuple(intersection, surface_normal);
  315. }
  316. */
  317. return result;
  318. }
  319. } // namespace system
  320. } // namespace entity